SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van Lanen Henny A. J.) "

Sökning: WFRF:(Van Lanen Henny A. J.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Van Loon, Anne F., et al. (författare)
  • Drought in a human-modified world : reframing drought definitions, understanding, and analysis approaches
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20:9, s. 3631-3650
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes. Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future.
  •  
2.
  • Van Loon, Anne F., et al. (författare)
  • Streamflow droughts aggravated by human activities despite management
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities both aggravate and alleviate streamflow drought. Here we show that aggravation is dominant in contrasting cases around the world analysed with a consistent methodology. Our 28 cases included different combinations of human-water interactions. We found that water abstraction aggravated all drought characteristics, with increases of 20%-305% in total time in drought found across the case studies, and increases in total deficit of up to almost 3000%. Water transfers reduced drought time and deficit by up to 97%. In cases with both abstraction and water transfers into the catchment or augmenting streamflow from groundwater, the water inputs could not compensate for the aggravation of droughts due to abstraction and only shift the effects in space or time. Reservoir releases for downstream water use alleviated droughts in the dry season, but also led to deficits in the wet season by changing flow seasonality. This led to minor changes in average drought duration (-26 to +38%) and moderate changes in average drought deficit (-86 to +369%). Land use showed a smaller impact on streamflow drought, also with both increases and decreases observed (-48 to +98%). Sewage return flows and pipe leakage possibly counteracted the effects of increased imperviousness in urban areas; however, untangling the effects of land use change on streamflow drought is challenging. This synthesis of diverse global cases highlights the complexity of the human influence on streamflow drought and the added value of empirical comparative studies. Results indicate both intended and unintended consequences of water management and infrastructure on downstream society and ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy