SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandenbroeck Koen) "

Sökning: WFRF:(Vandenbroeck Koen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gómez-Fernández, Paloma, et al. (författare)
  • The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis
  • 2020
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10-4). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%-60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.
  •  
2.
  • Lill, Christina M., et al. (författare)
  • Closing the case of APOE in multiple sclerosis : no association with disease risk in over 29 000 subjects
  • 2012
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 49:9, s. 558-562
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Single nucleotide polymorphisms (SNPs) rs429358 (ε4) and rs7412 (ε2), both invoking changes in the amino-acid sequence of the apolipoprotein E (APOE) gene, have previously been tested for association with multiple sclerosis (MS) risk. However, none of these studies was sufficiently powered to detect modest effect sizes at acceptable type-I error rates. As both SNPs are only imperfectly captured on commonly used microarray genotyping platforms, their evaluation in the context of genome-wide association studies has been hindered until recently.Methods We genotyped 12 740 subjects hitherto not studied for their APOE status, imputed raw genotype data from 8739 subjects from five independent genome-wide association studies datasets using the most recent high-resolution reference panels, and extracted genotype data for 8265 subjects from previous candidate gene assessments.Results Despite sufficient power to detect associations at genome-wide significance thresholds across a range of ORs, our analyses did not support a role of rs429358 or rs7412 on MS susceptibility. This included meta-analyses of the combined data across 13 913 MS cases and 15 831 controls (OR=0.95, p=0.259, and OR 1.07, p=0.0569, for rs429358 and rs7412, respectively).Conclusion Given the large sample size of our analyses, it is unlikely that the two APOE missense SNPs studied here exert any relevant effects on MS susceptibility.
  •  
3.
  • Mena, Jorge, et al. (författare)
  • Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55-IL6ST Gene Region in Immature Dendritic Cells
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Intronic single-nucleotide polymorphisms (SNPs) in the ANKRD55 gene are associated with the risk for multiple sclerosis (MS) and rheumatoid arthritis by genome-wide association studies (GWAS). The risk alleles have been linked to higher expression levels of ANKRD55 and the neighboring IL6ST (gp130) gene in CD4(+) T lymphocytes of healthy controls. The biological function of ANKRD55, its role in the immune system, and cellular sources of expression other than lymphocytes remain uncharacterized. Here, we show that monocytes gain capacity to express ANKRD55 during differentiation in immature monocyte-derived dendritic cells (moDCs) in the presence of interleukin (IL)-4/granulocyte-macrophage colony-stimulating factor (GM-CSF). ANKRD55 expression levels are further enhanced by retinoic acid agonist AM580 but downregulated following maturation with interferon (IFN)-gamma and lipopolysaccharide (LPS). ANKRD55 was detected in the nucleus of moDC in nuclear speckles. We also analyzed the adjacent IL6ST, IL31RA, and SLC38A9 genes. Of note, in healthy controls, MS risk SNP genotype influenced ANKRD55 and IL6ST expression in immature moDC in opposite directions to that in CD4(+) T cells. This effect was stronger for a partially correlated SNP, rs13186299, that is located, similar to the main MS risk SNPs, in an ANKRD55 intron. Upon analysis in MS patients, the main GWAS MS risk SNP rs7731626 was associated with ANKRD55 expression levels in CD4(+) T cells. MoDC-specific ANKRD55 and IL6ST mRNA levels showed significant differences according to the clinical form of the disease, but, in contrast to healthy controls, were not influenced by genotype. We also measured serum sgp130 levels, which were found to be higher in homozygotes of the protective allele of rs7731626. Our study characterizes ANKRD55 expression in moDC and indicates monocyte-to-dendritic cell (Mo-DC) differentiation as a process potentially influenced by MS risk SNPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy