SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandewal K.) "

Sökning: WFRF:(Vandewal K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Genene, Zewdneh, 1983, et al. (författare)
  • Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells
  • 2020
  • Ingår i: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 77
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel high gap donor polymers – PBDTTSi-TzBI and PBDTTS-TzBI, based on imide-fused benzotriazole (TzBI) with asymmetric side chains and alkylsilyl (Si) or alkylthio (S) substituted 4,8-di(thien-2-yl)benzo-[1,2-b:4,5-b′]dithiophene (BDTT) – are successfully synthesized. The effect of the side chain variation on the photophysical, morphological and photovoltaic properties of blends of these polymers with fullerene and non-fullerene acceptors is investigated. The PBDTTSi-TzBI polymer shows a deeper highest occupied molecular orbital energy level, which results in higher open-circuit voltages. Nevertheless, the polymer solar cells fabricated using PBDTTS-TzBI in combination with PC71BM afford a higher power conversion efficiency of 7.3% (vs 4.0% for PBDTTSi-TzBI:PC71BM). By using the non-fullerene acceptor ITIC, the absorption of the blends extends to 850 nm and better device efficiencies are achieved, 6.9% and 9.6% for PBDTTSi-TzBI:ITIC and BDTTS-TzBI:ITIC, respectively. The better performance of the PBDTTS-TzBI:ITIC-based devices is attributed to the strong and broad absorption and balanced charge transport, and is among the best performances reported for non-fullerene solar cells based on TzBI-containing polymer donors.
  •  
2.
  • Ma, Z. F., et al. (författare)
  • Structure-Property Relationships of Oligothiophene-Isoindigo Polymers for Efficient Bulk-Heterojunction Solar Cells
  • 2014
  • Ingår i: Energy and Environmental Sciences. - 1754-5692 .- 1754-5706. ; 7:1, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of alternating oligothiophene (nT)–isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer–fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure–property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc.
  •  
3.
  • Negash, Asfaw, et al. (författare)
  • Diketopyrrolopyrrole-based terpolymers with tunable broad band absorption for fullerene and fullerene-free polymer solar cells
  • 2019
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 7:11, s. 3375-3384
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of random terpolymers with donor-acceptor-donor-acceptor molecular configuration, comprising fluorinated benzotriazole (FTAZ) and thienothiophene-capped diketopyrrolopyrrole (TTDPP) as the first and second electron-accepting moieties and thienyl-substituted benzodithiophene (BDTT) as the electron-donating unit, are designed for polymer solar cells. By tuning the ratio of TTDPP and FTAZ, the optoelectronic properties of the terpolymers are systematically varied. All materials exhibit a broad absorption window spanning from 300 to 900 nm, illustrating the success of the terpolymer approach. Fullerene-based polymer solar cells fabricated from the terpolymer with the highest content of TTDPP afford a power conversion efficiency of 5.7%, with a short-circuit current density of 15.2 mA cm -2 . On the other hand, solar cell devices composed of the terpolymer with the lowest content of TTDPP and the narrow gap non-fullerene acceptor IEICO-4F exhibit a higher efficiency of 6.3%, with an enhanced short-circuit current density of 17.5 mA cm -2 , as a result of a better complementarity in the absorption of the donor and acceptor materials and well-balanced charge carrier mobilities. This efficiency represents the best value for fullerene-free polymer solar cells based on DPP-containing polymers to date.
  •  
4.
  • Negash, Asfaw, et al. (författare)
  • Exploring the High-Temperature Window of Operation for Organic Photovoltaics: A Combined Experimental and Simulations Study
  • 2024
  • Ingår i: Advanced Materials for Optics and Electronics. - 1616-301X .- 1616-3028. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The global climate change negatively affects the photovoltaic performance of traditional solar cell technologies. This article investigates the potential of organic photovoltaics (OPV) for high-temperature environments, ranging from urban hot summers (30—40 °C) and desert regions (65 °C) up to (aero) space conditions (130 °C), the thermal window in which OPV can operate. The approach is based on a combination of experiments and simulations up to 180 °C, moving significantly beyond the conventional temperature ranges reported in the literature. New 2H-benzo[d][1,2,3]triazole-5,6-dicarboxylic imide-based copolymers with decomposition onset temperatures above 340 °C are used for this study, in combination with non-fullerene acceptors. Contrary to their inorganic counterparts, OPV devices show a positive temperature coefficient up to ≈90 °C. At temperatures of 150 °C, they are still operational, retaining their room temperature efficiency. Complementary simulations are performed using an in-house developed software package that numerically solves the drift-diffusion equations to understand the general trends in the obtained current–voltage characteristics and the materials’ intrinsic behavior as a function of temperature. The presented methodology of combined high-temperature experiments and simulations can be further applied to investigate the thermal window of operation for other OPV material systems, opening novel high-temperature application routes.
  •  
5.
  • Negash, Asfaw, et al. (författare)
  • Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaics
  • 2019
  • Ingår i: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 74, s. 211-217
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Elsevier B.V. Two push-pull type conjugated polymers - PIDTT−BTz and PIDTT−DTBTz, based on the ladder-type donor unit indacenodithieno[3,2-b]thiophene (IDTT) and bithiazole (BTz) as acceptor component - are designed and synthesized for photovoltaic applications. The polymers exhibit relatively high optical gaps of ~2.0 eV with strong absorption in the range of 400–600 nm, rendering them of particular interest for the harvesting of indoor light and/or multijunction devices. Electrochemical investigations indicate a lower highest occupied molecular orbital energy level (−5.44 eV) for PIDTT−BTz as compared to PIDTT−DTBTz (−5.36 eV), enabling to achieve a higher open-circuit voltage. Under solar illumination, the best power conversion efficiency (5.1%) is achieved for the combination PIDTT−DTBTz:PC71BM (compared to 4.6% for PIDTT−BTz:PC71BM).
  •  
6.
  •  
7.
  • Yu, Liyang, 1986, et al. (författare)
  • Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244.
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 American Chemical Society. Organic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature Tg of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high Tg of ∼180 °C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above Tg, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high-Tg materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy