SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vannucci Susan J.) "

Sökning: WFRF:(Vannucci Susan J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustavsson, Malin, 1975, et al. (författare)
  • Vascular response to hypoxic preconditioning in the immature brain
  • 2007
  • Ingår i: J Cereb Blood Flow Metab. ; 27:5, s. 928-38
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesized that hypoxic preconditioning (PC) modifies the microvasculature in the immature brain and thereby affects the cerebral blood flow (CBF) during a subsequent hypoxic-ischemic (HI) insult. On postnatal day 6 rats were exposed to hypoxia (36 degrees C, 8.0% O2) or normoxia for 3 h. Unilateral HI (unilateral carotid ligation and 8% hypoxia) was induced 24 h later. Cortical CBF was measured with the 14C-iodoantipyrine technique (at the end of HI) or with laser Doppler flowmetry (Perimed PF5001) before and during HI. At 0, 2, 8, and 24 h cerebral cortex was sampled and analyzed with gene arrays (Affymetrix 230 2.0). L-nitroarginine or vehicle was administrated before hypoxic PC or 30 mins before HI followed by CBF measurement (laser Doppler) during subsequent HI. Twenty-four hours after PC animals were perfusion-fixed and brains immunolabeled for von Willebrand factor and vascular density was determined by stereological quantification. The decrease in CBF during HI was attenuated significantly in PC versus control animals (P<0.01), as detected by both techniques. Several vascular genes (Angpt2, Adm, Apln, Vegf, Flt1, Kdr, Pdgfra, Agtrap, Adora2a, Ednra, serpine1, caveolin, Id1, Prrx1, Ero1l, Acvrl1, Egfl7, Nudt6, Angptl4, Anxa2, and NOS3) were upregulated and a few (Csrp2, Adora2b) were downregulated after PC. A significant increase in vascular density (P<0.05) was seen after PC. Nitric oxide synthase inhibition did not affect CBF during HI after PC. In conclusion, hypoxic PC upregulates vascular genes, increases vascular density and attenuates the decrease of CBF during a subsequent HI, which could contribute to tolerance.
  •  
2.
  • Hagberg, Henrik, 1955, et al. (författare)
  • The role of inflammation in perinatal brain injury.
  • 2015
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 11:4, s. 192-208
  • Forskningsöversikt (refereegranskat)abstract
    • Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
  •  
3.
  •  
4.
  •  
5.
  • Vannucci, Susan J., et al. (författare)
  • Hypoxia-ischemia in the immature brain
  • 2004
  • Ingår i: J Exp Biol. ; 207:Pt 18, s. 3149-54
  • Forskningsöversikt (refereegranskat)abstract
    • The immature brain has long been considered to be resistant to the damaging effects of hypoxia and hypoxia-ischemia (H/I). However, it is now appreciated that there are specific periods of increased vulnerability, which relate to the developmental stage at the time of the insult. Although much of our knowledge of the pathophysiology of cerebral H/I is based on extensive experimental studies in adult animal models, it is important to appreciate the major differences in the immature brain that impact on its response to, and recovery from, H/I. Normal maturation of the mammalian brain is characterized by periods of limitations in glucose transport capacity and increased use of alternative cerebral metabolic fuels such as lactate and ketone bodies, all of which are important during H/I and influence the development of energy failure. Cell death following H/I is mediated by glutamate excitotoxicity and oxidative stress, as well as other events that lead to delayed apoptotic death. The immature brain differs from the adult in its sensitivity to all of these processes. Finally, the ultimate outcome of H/I in the immature brain is determined by the impact on the ensuing cerebral maturation. A hypoxic-ischemic insult of insufficient severity to result in rapid cell death and infarction can lead to prolonged evolution of tissue damage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy