SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varani S.) "

Sökning: WFRF:(Varani S.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Giusti, Pablo, 1975-, et al. (författare)
  • The novel anti-rheumatic compound Rabeximod impairs differentiation and function of human pro-inflammatory dendritic cells and macrophages
  • 2011
  • Ingår i: Immunobiology. - : Elsevier BV. - 0171-2985 .- 1878-3279. ; 216:1-2, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Rabeximod (9-chloro-2,3-dimethyl-6-(N,N-dimethylaminoethylamino-2-oxoethyl)-6H-indolo[2,3-b]quinoxaline) is a synthetic compound that is currently being developed for the treatment of rheumatoid arthritis (RA). Here, we investigated the effects of Rabeximod on the functionality of human antigen-presenting cells (APCs) of myeloid origin. Different subsets of professional APCs were generated from human monocytes in vitro and simultaneously treated with different doses of Rabeximod. Although Rabeximod had no effect on the differentiation of monocytes into anti-inflammatory macrophages (AI-Ms), this compound impaired monocyte differentiation into monocyte-derived dendritic cells (MDCs) and pro-inflammatory allostimulated macrophages (Allo-Ms). MDCs that were treated with Rabeximod resulted in a significant decrease in their ability to pinocytose antigens, while no effect was exerted by the drug on the ability of Allo-Ms and AI-Ms to phagocytose. Furthermore, we observed a significant reduction in the allostimulatory ability of MDCs and Allo-Ms after treatment with Rabeximod, although this compound did not affect the low immunostimulatory capacity of AI-Ms. Conversely, the effect of Rabeximod in influencing cytokine secretion by APCs appeared to be limited. In conclusion, Rabeximod impairs differentiation of monocytes into different pro-inflammatory APCs, leading to impaired immunostimulatory abilities of these cells. Our observations shed light on the cellular mode of action and the immunomodulatory effect of Rabeximod.
  •  
7.
  •  
8.
  • Chen, Baoqing, et al. (författare)
  • The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 159:6, s. 2146-2162
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & AimsChromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer–associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic.MethodsWe performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2′-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients.ResultsHigh expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients.ConclusionsWe found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy