SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varjani S) "

Sökning: WFRF:(Varjani S)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, M., et al. (författare)
  • Current research trends on micro- and nano-plastics as an emerging threat to global environment : A review
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 409
  • Forskningsöversikt (refereegranskat)abstract
    • Micro-and nano-plastics (MNPs) (size < 5 mm/<100 nm) epitomize one of the emergent environmental pollutants with its existence all around the globe. Their high persistence nature and release of chemicals/additives used in synthesis of plastics materials may pose cascading impacts on living organism across the globe. Natural connectivity of all the environmental compartments (terrestrial, aquatic, and atmospheric) leads to migration/dispersion of MNPs from one compartment to others. Nevertheless, the information on dispersion of MNPs across the environmental compartments and its possible impacts on living organisms are still missing. This review first acquaints with dispersion mechanisms of MNPs in the environment, its polymeric/oligomeric and chemical constituents and then emphasized its impacts on living organism. Based on the existing knowledge about the MNPs’ constituent and its potential impacts on the viability, development, lifecycle, movements, and fertility of living organism via several potential mechanisms, such as irritation, oxidative damage, digestion impairment, tissue deposition, change in gut microbial communities’ dynamics, impaired fatty acid metabolism, and molecular damage are emphasized. Finally, at the end, the review provided the challenges associated with remediation of plastics pollutions and desirable strategies, policies required along with substantial gaps in MNPs research were recommended for future studies.
  •  
2.
  • Gaur, V K, et al. (författare)
  • Sustainable strategies for combating hydrocarbon pollution : Special emphasis on mobil oil bioremediation
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 832
  • Tidskriftsartikel (refereegranskat)abstract
    • The global rise in industrialization and vehicularization has led to the increasing trend in the use of different crude oil types. Among these mobil oil has major application in automobiles and different machines. The combustion of mobil oil renders a non-usable form that ultimately enters the environment thereby causing problems to environmental health. The aliphatic and aromatic hydrocarbon fraction of mobil oil has serious human and environmental health hazards. These components upon interaction with soil affect its fertility and microbial diversity. The recent advancement in the omics approach viz. metagenomics, metatranscriptomics and metaproteomics has led to increased efficiency for the use of microbial based remediation strategy. Additionally, the use of biosurfactants further aids in increasing the bioavailability and thus biodegradation of crude oil constituents. The combination of more than one approach could serve as an effective tool for efficient reduction of oil contamination from diverse ecosystems. To the best of our knowledge only a few publications on mobil oil have been published in the last decade. This systematic review could be extremely useful in designing a micro-bioremediation strategy for aquatic and terrestrial ecosystems contaminated with mobil oil or petroleum hydrocarbons that is both efficient and feasible. The state-of-art information and future research
  •  
3.
  • Koul, Y, et al. (författare)
  • Microbial electrolysis : a promising approach for treatment and resource recovery from industrial wastewater
  • 2022
  • Ingår i: Bioengineered. - : Informa UK Limited. - 2165-5979 .- 2165-5987. ; 13:4, s. 8115-8134
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewater is one of the most common by-products of almost every industrial process. Treatment of wastewater alone, before disposal, necessitates an excess of energy. Environmental concerns over the use of fossil fuels as a source of energy have prompted a surge in demand for alternative energy sources and the development of sophisticated procedures to extract energy from unconventional sources. Treatment of municipal and industrial wastewater alone accounts for about 3% of global electricity use while the amount of energy embedded in the waste is at least 2-4 times greater than the energy required to treat the same effluent. The microbial electrolysis cell (MEC) is one of the most efficient technologies for waste-to-product conversion that uses electrochemically active bacteria to convert organic matter into hydrogen or a variety of by-products without polluting the environment. This paper highlights existing obstacles and future potential in the integration of Microbial Electrolysis Cell with other processes like anaerobic digestion coupled system, anaerobic membrane bioreactor and thermoelectric micro converter.
  •  
4.
  • Mishra, B., et al. (författare)
  • Engineering biocatalytic material for the remediation of pollutants : A comprehensive review
  • 2020
  • Ingår i: Environmental Technology & Innovation. - : Elsevier B.V.. - 2352-1864. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioremediation through biotechnological interventions has attracted more attention among researchers in field of environmental pollution control and abatement. Various cutting-edge studies in area of protein engineering and synthetic biology offer a new platform for creation of innovative, advanced biological materials for its beneficial role in environmental pollution mitigation. Biocatalysis especially receives considerable attention as sustainable approach to resource recovery from waste along with elimination of pollutants. This paper focuses on updated developments in engineering of biocatalytic substances which can degrade pollutants of emerging concern. It also explains various classes of biocatalysts, their mechanisms of immobilization, and applications in terms of environmental pollutant remediation. Opportunities and challenges for future research have also been discussed. 
  •  
5.
  • Awasthi, S. K., et al. (författare)
  • Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 291
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the influence of coconut shell biochar (CSB) on heavy metal resistance fungi (HMRF) during poultry manure (PM) composting by 18 S rDNA Internal Transcribed Spacer Amplicon Sequencing analysis. Five different concentrations of CSB (2.5%, 5%, 7.5%, and 10% dry weights basis) were applied with a mixture of PM and wheat straw (5:1 ratio dry weight basis) and without CSB (CK) was used as control. The results showed that sequence number rose along with increasing CSB concentration but total relative abundance (RA) of HMRF decreased 56.33%, 74.65% in T4 and T5, respectively. However, greater RA of HMRF was found in T1 or without biochar applied treatment. The phylum of Basidiomycota was the dominant fungal community accounting for 61.14%, 6.16%, 32.18%, 74.65%, and 73.73% from T1 to T5 of the total fungi abundance, with wide presence of the Wallemiomycetes and Eurotiomycetes classes. The Wallemia and Aspergillus were the richest genus and species. Wallemia_sebi, Altemaria_alternata and Aspergillus_amoenus were detected having greater abundance among all treatments. Besides this, the network correlation pattern confirmed that the relative greater percentage of correlation among dominant HMRF community with bio-available HM and other physicochemical factors increased with the addition of biochar. There was reasonable infer that the biochar amendment in composting could constitute favorable habitat for an active fungal population. 
  •  
6.
  • Gaur, V. K., et al. (författare)
  • Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy : An overview
  • 2022
  • Ingår i: Bioresource Technology. - : Elsevier Ltd. - 0960-8524 .- 1873-2976. ; 343
  • Forskningsöversikt (refereegranskat)abstract
    • Waste generation is becoming a global concern owing to its adverse effects on environment and human health. The utilization of waste as a feedstock for production of value-added products has opened new avenues contributing to environmental sustainability. Microorganisms have been employed for production of biosurfactants as secondary metabolites by utilizing waste streams. Utilization of waste as a substrate significantly reduces the cost of overall process. Biosurfactant(s) derived from these processes can be utilized in environmental and different industrial sectors. This review focuses on global market of biosurfactants followed by discussion on production of biosurfactants from waste streams such as agro-industrial waste and waste cooking oil. The need for waste stream derived circular bioeconomy and scale up of biosurfactant production have been narrated with applications of biosurfactants in environment and industrial sectors. Road blocks and future directions for research have also been discussed. © 2021 Elsevier Ltd
  •  
7.
  • Harirchi, Sharareh, et al. (författare)
  • Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs) : a review
  • 2022
  • Ingår i: Bioengineered. - : Taylor and Francis Ltd.. - 2165-5979 .- 2165-5987. ; 13:3, s. 6521-6557
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  •  
8.
  • Varjani, S., et al. (författare)
  • Bio-based rhamnolipids production and recovery from waste streams : Status and perspectives
  • 2021
  • Ingår i: Bioresource Technology. - : Elsevier BV. - 0960-8524 .- 1873-2976. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Bio-based rhamnolipid production from waste streams is gaining momentum nowadays because of increasing market demand, huge range of applications and its economic and environment friendly nature. Rhamnolipid type biosurfactants are produced by microorganisms as secondary metabolites and have been used to reduce surface/interfacial tension between two different phases. Biosurfactants have been reported to be used as an alternative to chemical surfactants. Pseudomonas sp. has been frequently used for production of rhamnolipid. Various wastes can be used in production of rhamnolipid. Rhamnolipids are widely used in various industrial applications. The present review provides information about structure and nature of rhamnolipid, production using different waste materials and scale-up of rhamnolipid production. It also provides comprehensive literature on various industrial applications along with perspectives and challenges in this research area. 
  •  
9.
  • Zhou, Y W, et al. (författare)
  • Patterns of heavy metal resistant bacterial community succession influenced by biochar amendment during poultry manure composting
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 420
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate the heavy metal resistant bacteria (HMRB) community succession and bacterial activity in poultry manure (PM) composting. Five different concentration of chicken manure biochar (CMB) at 0%, 2%, 4%, 6%, and 10% on a dry weight basis was applied with initial feedstock (poultry manure + wheat straw) and indicated with T1, T2, T3, T4, and T5. In addition, high-throughput sequencing, principal coordinate analysis, and correlation analysis were used to analyze the evolution of HMRB communities during composting. The study indicated that crucial phyla were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. The bacterial diversity in the CMB amendment treatment was higher than in the control treatment, and T4 treatment has the highest among all CMB applied treatments. Moreover, results from CCA indicated that T4 and T5 treatments quickly enters the high-temperature period which is maintained for 5 days, and is significantly positively correlated with Proteobacteria, and Actinobacteria. These findings offer insight into potential strategies to understand the succession of HMRBs during PM reuse. Overall, the above results show the addition of 6% biochar (T4) was potentially beneficial to enrich the abundance of bacterial community to improve composting environment quality and composting efficiency. In addition, effective to immobilized the heavy metals and HMRB in the end product.
  •  
10.
  • Awasthi, S. K., et al. (författare)
  • Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 406
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the influence of coconut shell biochar addition (CSB) on heavy metals (Cu and Zn) resistance bacterial fate and there correlation with physicochemical parameters were evaluated during poultry manure composting. High-throughput sequencing was carried out on five treatments, namely T1−T5, where T2 to T5 were supplemented with 2.5%, 5%, 7.5% and 10% CSB, while T1 was used as control for the comparison. The results of HMRB indicated that the relative abundance of major potential bacterial host altered were Firmicutes (52.88–14.32%), Actinobacteria (35.20–4.99%), Bacteroidetes (0.05–15.07%) and Proteobacteria (0.01–20.28%) with elevated biochar concentration (0%−10%). Beta and alpha diversity as well as network analysis illustrated composting micro-environmental ecology with exogenous additive biochar to remarkably affect the dominant resistant bacterial community distribution by adjusting the interacting between driving environmental parameters with potential host bacterial in composting. Ultimately, the amendment of 7.5% CSB into poultry manure composting was able to significantly reduce the HMRB abundance, improve the composting efficiency and end product quality. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy