SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varner R.K) "

Sökning: WFRF:(Varner R.K)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burke, S. A., et al. (författare)
  • Long-Term Measurements of Methane Ebullition From Thaw Ponds
  • 2019
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2208-2221
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic regions are experiencing rapid warming, leading to permafrost thaw and formation of numerous water bodies. Although small ponds in particular are considered hot spots for methane (CH4) release, long-term studies of CH4 efflux from these surfaces are rare. We have collected an extensive data set of CH4 ebullition (bubbling) measurements from eight small thaw ponds (<0.001 km(2)) with different physical and hydrological characteristics over four summer seasons, the longest set of observations from thaw ponds to date. The measured fluxes were highly variable with an average of 20.0 mg CH4 . m(-2) . day(-1) (median: 4.1 mg CH4 . m(-2) . day(-1), n = 2,063) which is higher than that of most nearby lakes. The ponds were categorized into four types based on clear and significant differences in bubble flux. We found that the amount of CH4 released as bubbles from ponds was very weakly correlated with environmental variables, like air temperature and atmospheric pressure, and was potentially more related to differences in physical characteristics of the ponds. Using our measured average daily bubble flux plus the available literature, we estimate circumpolar thaw ponds <0.001 km(2) in size to emit between 0.2 and 1.0 Tg of CH4 through ebullition. Our findings exemplify the importance of high-frequency measurements over long study periods in order to adequately capture the variability of these water bodies. Through the expansion of current spatial and temporal monitoring efforts, we can increase our ability to estimate CH4 emissions from permafrost pond ecosystems now and in the future.
  •  
2.
  • Ernakovich, J. G., et al. (författare)
  • Is A Common Goal A False Hope in Convergence Research? : Opportunities and Challenges of International Convergence Research to Address Arctic Change
  • 2021
  • Ingår i: Earth's Future. - : American Geophysical Union (AGU). - 2328-4277. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic faces multiple pressures including climate change, shifting demographics, human health risks, social justice imbalances, governance issues, and expanding resource extraction. A convergence of academic disciplines—such as natural and social sciences, engineering and technology, health and medicine—and international perspectives is required to meaningfully contribute to solving the challenges of Arctic peoples and ecosystems. However, successfully carrying out convergent, international research and education remains a challenge. Here, lessons from the planning phase of a convergence research project concerned with the health of Arctic waters developed by the Arctic Science IntegrAtion Quest (ASIAQ) are discussed. We discuss our perspective on the challenges, as well as strategies for success, in convergence research as gained from the ASIAQ project which assembled an international consortium of researchers from disparate disciplines representing six universities from four countries (Sweden, Japan, Russia, and the United States) during 2018–2020.
  •  
3.
  • Fahnestock, M. F., et al. (författare)
  • Mercury reallocation in thawing subarctic peatlands
  • 2019
  • Ingår i: Geochemical perspectives letters. - : European Association of Geochemistry. - 2410-339X .- 2410-3403. ; 11, s. 33-38
  • Tidskriftsartikel (refereegranskat)abstract
    • Warming Arctic temperatures have led to permafrost thaw that threatens to release previously sequestered mercury (Hg) back into the environment. Mobilisation of Hg in permafrost waters is of concern, as Hg methylation produced under water-saturated conditions results in the neurotoxin, methyl Hg (MeHg). Thawing permafrost may enhance Hg export, but the magnitude and mechanisms of this mobilisation within Arctic ecosystems remain poorly understood. Such uncertainty limits prognostic modelling of Hg mobilisation and impedes a comprehensive assessment of its threat to Arctic ecosystems and peoples. Here, we address this knowledge gap through an assessment of Hg dynamics across a well-studied permafrost thaw sequence at the peak of the growing season in biologically active peat overlying permafrost, quantifying total gaseous mercury (TGM) fluxes, total mercury (Hg-Tot) in the active layer peat, porewater MeHg concentrations, and identifying microbes with the potential to methylate Hg. During the initial thaw, TGM is liberated, likely by photoreduction from permafrost where it was previously stored for decades to centuries. As thawing proceeds, TGM is largely driven by hydrologic changes as evidenced by Hg accumulation in water-logged, organic-rich peat sediments in fen sites. MeHg in porewaters increase across the thaw gradient, a pattern coincident with increases in the relative abundance of microbes possibly containing genes allowing for methylation of ionic Hg. Findings suggest that under changing climate, frozen, well-drained habitats will thaw and collapse into saturated landscapes, increasing the production of MeHg and providing a significant source of the toxic, bioaccumulative contaminant.
  •  
4.
  • Giasson, M-A, et al. (författare)
  • Soil respiration in a northeastern US temperate forest : a 22-year synthesis
  • 2013
  • Ingår i: Ecosphere. - 2150-8925 .- 2150-8925. ; 4:11, s. UNSP 140-
  • Tidskriftsartikel (refereegranskat)abstract
    • To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (R-s), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site-years of eddy-covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (R-e). R-s was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of R-s to experimental manipulations mimicking aspects of global change or aimed at partitioning R-s into component fluxes ranged from similar to 70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on R-s was transient, but in other cases the time series were not long enough to rule out long-term changes in respiration rates. Inter-annual variations in weather and phenology induced variation among annual R-s estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy-covariance sites, aboveground respiration dominated R-e early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns-high apparent rates of respiration during winter and very low rates in mid-to-late summer-at the Environmental Measurement Site suggest either bias in R-s and R-e estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard-to-measure fluxes (e.g., wintertime R-s, unaccounted losses of CO2 from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of R-e, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data-rich analysis identifies important seasonal and experimental variations in R-s and R-e and in the partitioning of R-e above-vs. belowground.
  •  
5.
  • Holmes, M. E., et al. (författare)
  • Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition
  • 2022
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum-dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi-decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi-continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year-round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial-scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2-equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
  •  
6.
  •  
7.
  • Philips, S. C., et al. (författare)
  • Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. G02019-
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon dioxide efflux (soil respiration, SR) was measured with eight autochambers at two locations along a wetland to upland slope at Harvard Forest over a 4 year period, 2003–2007. SR was consistently higher in the upland plots than at the wetland margin during the late summer/early fall. Seasonal and diel hystereses with respect to soil temperatures were of sufficient magnitude to prevent quantification of the influence of soil moisture, although apparent short-term responses of SR to precipitation occurred. Calculations of annual cumulative SR illustrated a decreasing trend in SR over the 5 year period, which were correlated with decreasing springtime mean soil temperatures. Spring soil temperatures decreased despite rising air temperatures over the same period, possibly as an effect of earlier leaf expansion and shading. The synchronous decrease in spring soil temperatures and SR during regional warming of air temperatures may represent a negative feedback on a warming climate by reducing CO2 production from soils. SR reached a maximum later in the year than total ecosystem respiration (ER) measured at a nearby eddy covariance flux tower, and the seasonality of their temperature response patterns were roughly opposite. SR, particularly in the upland, exceeded ER in the late summer/early fall in each year, suggesting that areas of lower efflux such as the wetland may be significant in the flux tower footprint or that long-term bias in either estimate may create a mismatch. Annual estimates of ER decreased over the same period and were highly correlated with SR.
  •  
8.
  • Silver, W.L., et al. (författare)
  • Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.
  • 2005
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 11:2, s. 290-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m−2 yr−1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=−0.96 year−1) than in the sandy loam soil (k=−0.61 year−1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm−2 h−1) than in the sandy loam (1.4±0.2 ng N cm−2 h−1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1-year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m−2 yr−1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr−1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land-use change can contribute significantly to increased rates of nitrogen trace gas emissions.
  •  
9.
  • Treat, C., et al. (författare)
  • Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen.
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:G01014
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined daily, seasonal, and interannual variations in CH4 emissions at a temperate peatland over a 5-year period. We measured net ecosystem CO2 exchange (NEE), CH4 flux, water table depth, peat temperature, and meteorological parameters weekly from the summers (1 May to 31 August) of 2000 through 2004 at Sallie's Fen in southeastern New Hampshire, United States. Significant interannual differences, driven by high variability of large individual CH4 fluxes (ranging from 8.7 to 3833.1 mg CH4 m−2 d−1) occurring in the late summer, corresponded with a decline in water table level and an increase in air and peat temperature. Monthly timescale yielded the strongest correlations between CH4 fluxes and peat and air temperature (r2 = 0.78 and 0.74, respectively) and water table depth (WTD) (r2 = 0.53). Compared to daily and seasonal timescales, the monthly timescale was the best timescale to predict CH4 fluxes using a stepwise multiple regression (r2 = 0.81). Species composition affected relationships between CH4 fluxes and measures of plant productivity, with sedge collars showing the strongest relationships between CH4 flux, water table, and temperature. Air temperature was the only variable that was strongly correlated with CH4 flux at all timescales, while WTD had either a positive or negative correlation depending on timescale and vegetation type. The timescale dependence of controls on CH4 fluxes has important implications for modeling.
  •  
10.
  • White, M.L., et al. (författare)
  • Controls on the Seasonal Exchange of CH3Br in Temperate Peatlands.
  • 2005
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 19:GB4009
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of CH3Br exchange at two New Hampshire peatlands (Sallie's Fen and Angie's Bog) indicate that net flux from these ecosystems is the sum of competing production and consumption processes. Net CH3Br fluxes were highly variable and ranged from net emission to net uptake between locations within a single peatland. At Sallie's Fen, net CH3Br flux exhibited positive correlations with peat temperature and air temperature during all seasons sampled, but these relationships were not observed at Angie's Bog where flux varied according to microtopography. The major CH3Br production process at Sallie's Fen appeared dependent on aerobic conditions within the peat, while CH3Br production at Angie's Bog was favored by anaerobic conditions. There was evidence of aerobic microbial consumption of CH3Br within the peat at both sites. In a vegetation removal experiment conducted at Sallie's Fen with dynamic chambers, all collars exhibited net consumption of CH3Br. Net CH3Br flux had a negative correlation with surface temperature and a positive correlation with water level in collars with all vegetation clipped consistent with aerobic microbial consumption. Vegetated collars showed positive correlations between net CH3Br flux and air temperature. A positive correlation between net CH3Br flux and surface temperature was also observed in collars in which all vegetation except Sphagnum spp. were clipped. These correlations are consistent with seasonal relationships observed in 1998, 1999, and 2000 and suggest that plants and/or fungi are possible sources of CH3Br in peatlands. Estimates of production and consumption made on two occasions at Sallie's Fen suggest that peatlands have lower rates of CH3Br consumption compared to upland ecosystems, but a close balance between production and consumption rates may allow these wetlands to act as either a net source or sink for this gas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy