SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vasar Martti) "

Sökning: WFRF:(Vasar Martti)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Moora, Mari, et al. (författare)
  • AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa
  • 2016
  • Ingår i: Mycorrhiza. - : Springer Science and Business Media LLC. - 0940-6360 .- 1432-1890. ; 26:7, s. 735-745
  • Tidskriftsartikel (refereegranskat)abstract
    • While the arbuscular mycorrhizal (AM) symbiosis is known to be widespread in terrestrial ecosystems, there is growing evidence that aquatic plants also form the symbiosis. It has been suggested that symbiosis with AM fungi may represent an important adaptation for isoA << tid plants growing on nutrient-poor sediments in oligotrophic lakes. In this study, we address AM fungal root colonization intensity, richness and community composition (based on small subunit (SSU) ribosomal RNA (rRNA) gene sequencing) in five populations of the isoA << tid plant species Lobelia dortmanna inhabiting oligotrophic lakes in Southern Sweden. We found that the roots of L. dortmanna hosted rich AM fungal communities and about 15 % of the detected molecular taxa were previously unrecorded. AM fungal root colonization intensity and taxon richness varied along an environmental gradient, being higher in oligotrophic and lower in mesotrophic lakes. The overall phylogenetic structure of this aquatic fungal community differed from that described in terrestrial systems: The roots of L. dortmanna hosted more Archaeosporaceae and fewer Glomeraceae taxa than would be expected based on global data from terrestrial AM fungal communities.
  •  
2.
  • Träger, Sabrina, et al. (författare)
  • Belowground plant parts are crucial for comprehensively estimating total plant richness in herbaceous and woody habitats
  • 2019
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 100:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most studies consider aboveground plant species richness as a representative biodiversity measure. This approach inevitably assumes that the partitioning of total plant species richness into above- and belowground components is constant or at least consistent within and across vegetation types. However, with studies considering belowground plant richness still scarce and completely absent along vegetation gradients, this assumption lacks experimental support. Novel DNA sequencing techniques allow economical, high-throughput species identification of belowground environmental samples, enabling the measurement of the contributions of both above- and belowground plant components to total plant richness. We investigated above- and belowground plant species richness in four vegetation types (birch forest, heath, low alpine tundra, high alpine tundra) at the scale of herbaceous plant neighborhoods (dm) using 454 sequencing of the chloroplast trnL (UAA) intron to determine the plant species richness of environmental root samples and combined it with aboveground data from vegetation surveys to obtain total plant species richness. We correlated the measured plant species richness components with each other and with their respective plant biomass components within and across vegetation types. Total plant species richness exceeded aboveground richness twice on average and by as much as three times in low alpine tundra, indicating that a significant fraction of belowground plant richness cannot be recorded aboveground. More importantly, no consistent relationship among richness components (above- and belowground) was found within or across vegetation types, indicating that aboveground richness alone cannot predict total plant richness in contrasting vegetation types. Finally, no consistent relationship between plant richness and the corresponding biomass component was found. Our results clearly show that aboveground plant richness alone is a poor estimator of total plant species richness within and across different vegetation types. Consequently, it is crucial to account for belowground plant richness in future plant ecological studies in order to validate currently accepted plant richness patterns, as well as to measure potential changes in plant community composition in a changing environment.
  •  
3.
  • Vahter, Tanel, et al. (författare)
  • Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:9, s. 1741-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Grasslands are among the most threatened terrestrial biomes, and habitat conservation alone will be insufficient to meet biodiversity goals. While restoration of indigenous grasslands is a priority, conflict with economic objectives means that incorporation of alternative habitats is necessary to offset grassland loss. With up to 800,000 km2 of land affected by mining globally, there is an opportunity to create additional grassland habitat in post-mining landscapes. We aimed to assess whether co-introduction of native arbuscular mycorrhizal (AM) fungi and plants is an efficient means of initializing species-rich vegetation recovery in barren post-mining landscapes. We established an experiment in three post-mining areas in Estonia, where we seeded plots with native plant seeds and inoculated them with trap-cultured native AM fungi from a similar habitat. We measured the abundance and composition of soil AM fungal and above-ground plant communities in two consecutive years using relevés, high-throughput sequencing and fatty acid profiling. Our results demonstrate that co-introduction of native plants and AM fungi is an effective way to establish species-rich vegetation in post-mining areas. Co-introduction of symbiotic partners resulted in higher richness, diversity and abundance of plants and AM fungi than when either partner was introduced individually. However, the plant and AM fungal communities in sown and inoculated plots were not distinct from those in uninoculated treatments; they rather formed a subset of all taxa present on the sites but exhibited higher diversity than in uninoculated plots. Synthesis and applications. This study shows that managing the below-ground microbiome is an essential part of vegetation restoration. The availability of symbiotic partners can be considered a key aspect determining the diversity of restored vegetation. Targeted inoculations with native and habitat-specific native arbuscular mycorrhizal fungi could therefore increase restoration success.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy