SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vasdev Neil) "

Sökning: WFRF:(Vasdev Neil)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Zhen, et al. (författare)
  • Design, Synthesis, and Evaluation of Reversible and Irreversible Monoacylglycerol Lipase Positron Emission Tomography (PET) Tracers Using a "Tail Switching" Strategy on a Piperazinyl Azetidine Skeleton
  • 2019
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 62:7, s. 3336-3353
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoacylglycerol lipase (MAGL) is a senile hydrolase that degrades 2-arachidonoylglycerol (2-AG) in the endocannabinoid system (eCB). Selective inhibition of MAGL has emerged as a potential therapeutic approach for the treatment of diverse pathological conditions, including chronic pain, inflammation, cancer, and neurodegeneration. Herein, we disclose a novel array of reversible and irreversible MAGL inhibitors by means of "tail switching" on a piperazinyl azetidine scaffold. We developed a lead irreversible-binding MAGL inhibitor 8 and reversible-binding compounds 17 and 37, which are amenable for radiolabeling with C-11 or F-18. [C-11]8 ([C-11]MAGL-2-11) exhibited high brain uptake and excellent binding specificity in the brain toward MAGL. Reversible radioligands [C-11]17 ([C-11]PAD) and [F-18]37 ([F-18]MAGL-4-11) also demonstrated excellent in vivo binding specificity toward MAGL in peripheral organs. This work may pave the way for the development of MAGL-targeted positron emission tomography tracers with tunability in reversible and irreversible binding mechanisms.
  •  
2.
  • Cheng, Ran, et al. (författare)
  • In Vitro and in Vivo Evaluation of C-11-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies
  • 2018
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 61:6, s. 2278-2291
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoacylglycerol lipase (MAGL) is the principle enzyme for metabolizing endogenous cannabinoid ligand 2-arachidonoyglycerol (2-AG). Blockade of MAGL increases 2-AG levels, resulting in subsequent activation of the endocannabinoid system, and has emerged as a novel therapeutic strategy to treat drug addiction, inflammation, and neurodegenerative diseases. Herein we report a new series of MAGL inhibitors, which were radiolabeled by site-specific labeling technologies, including C-11-carbonylation and spirocyclic iodonium ylide (SCIDY) radio fluorination. The lead compound [C-11]10 (MAGL-0519) demonstrated high specific binding and selectivity in vitro and in vivo. We also observed unexpected washout kinetics with these irreversible radiotracers, in which in vivo evidence for turnover of the covalent residue was unveiled between MAGL and azetidine carboxylates. This work may lead to new directions for drug discovery and PET tracer development based on azetidine carboxylate inhibitor scaffold.
  •  
3.
  •  
4.
  • Hou, Lu, et al. (författare)
  • Positron Emission Tomography Imaging of the Endocannabinoid System : Opportunities and Challenges in Radiotracer Development
  • 2021
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 64:1, s. 123-149
  • Forskningsöversikt (refereegranskat)abstract
    • The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
  •  
5.
  • Lindberg, Anton, et al. (författare)
  • Radiosynthesis, In Vitro and In Vivo Evaluation of [F-18]CBD-2115 as a First-in-Class Radiotracer for Imaging 4R-Tauopathies
  • 2021
  • Ingår i: ACS Chemical Neuroscience. - : AMER CHEMICAL SOC. - 1948-7193. ; 12:4, s. 596-602
  • Tidskriftsartikel (refereegranskat)abstract
    • CBD-2115 was selected from a library of 148 compounds based on a pyridinyl-indole scaffold as a first-in-class 4R-tau radiotracer. In vitro binding assays showed [H-3]CBD-2115 had a K-D value of 6.9 nM and a nominal B-max of 500 nM in 4R-tau expressing P301L transgenic mouse tissue. In binding assays with human brain tissue homogenates, [H-3]CBD-2115 has a higher affinity (4.9 nM) for progressive supranuclear palsy specific 4R-tau deposits than [H-3]flortaucipir (45 nM) or [H-3]MK-6240 (>50 nM). [F-18]CBD-2115 was reliably synthesized (3-11% radiochemical yield with molar activity of 27-111 GBq/mu mol and >97% radiochemical purity). Dynamic PET imaging was conducted in mice, rats, and nonhuman primates, and all species showed initial brain uptake of 0.5-0.65 standardized uptake value with fast clearance from normal tissues. [H-3]CBD-2115 could be a useful lead radioligand for further research in 4R-tauopathies, and PET radiotracer development will focus on improving brain uptake and binding affinity.
  •  
6.
  • Sadovski, Oleg, et al. (författare)
  • Development and characterization of a promising fluorine-18 labelled radiopharmaceutical for in vivo imaging of fatty acid amide hydrolase
  • 2013
  • Ingår i: Bioorganic & Medicinal Chemistry. - : Elsevier BV. - 0968-0896 .- 1464-3391. ; 21:14, s. 4351-4357
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acid amide hydrolase (FAAH), the enzyme responsible for terminating signaling by the endocannabinoid anandamide, plays an important role in the endocannabinoid system, and FAAH inhibitors are attractive drugs for pain, addiction, and neurological disorders. The synthesis, radiosynthesis, and evaluation, in vitro and ex vivo in rat, of an F-18-radiotracer designed to image FAAH using positron emission tomography (PET) is described. Fluorine-18 labelled 3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate, [F-18]5, was synthesized at high specific activity in a one-pot three step reaction using a commercial module with a radiochemical yield of 17-22% (from [F-18]fluoride). In vitro assay using rat brain homogenates showed that 5 inhibited FAAH in a time-dependent manner, with an IC50 value of 0.82 nM after a preincubation of 60 min. Ex vivo biodistribution studies and ex vivo autoradiography in rat brain demonstrated that [F-18]5 had high brain penetration with standard uptake values of up to 4.6 and had a regional distribution which correlated with reported regional FAAH enzyme activity. Specificity of binding to FAAH with [H-18]5 was high (>90%) as demonstrated by pharmacological challenges with potent and selective FAAH inhibitors and was irreversible as demonstrated by radioactivity measurements on homogenized brain tissue extracts. We infer from these results that [F-18]5 is a highly promising candidate radiotracer with which to image FAAH in human subjects using PET and clinical studies are proceeding.(C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
  •  
7.
  • Sehlin, Dag, 1976-, et al. (författare)
  • Engineered antibodies : new possibilities for brain PET?
  • 2019
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : SPRINGER. - 1619-7070 .- 1619-7089. ; 46:13, s. 2848-2858
  • Forskningsöversikt (refereegranskat)abstract
    • Almost 50 million people worldwide are affected by Alzheimer's disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand's pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands.
  •  
8.
  • Stevens, Marc, 1984- (författare)
  • Multicomponent Reactions in 11C/12C Chemistry : – Targeting the Angiotensin II Subtype 2 Receptor
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Section 1 of this thesis contains an introduction to method development in organic synthesis, multicomponent reactions, sulfonyl azides, tracer development in 11C chemistry and the biological target.Section 2 describes the use of sulfonyl azides in carbonylative chemistry. Paper I covers development of a diazotransfer protocol. In total, 30 arylsulfonyl azides were synthesised from primary sulfonamides (20–90% yield). 15N mechanistic studies were carried out and in Paper II, the products were converted into sulfonamides, sulfonylureas and sulfonyl carbamates (19–90% yield). For ureas and carbamates, a two-chamber protocol was employed to release CO from Mo(CO)6. 15N mechanistic studies showed that the sulfonamides were formed by direct displacement of azide.Section 3 covers imaging and biological studies of the angiotensin II receptor subtype 2 (AT2R). In Paper III, 12 11C-sulfonyl carbamates were prepared in isolated radiochemical yields of 3–51% via Rh(I)-mediated carbonylation. The first non-peptide AT2R agonist, C21, was labelled (isolated RCY 24±10%, SA 34–51 GBq/µmol). C21 was tested in a prostate cancer assay, followed by biodistribution and small-animal PET studies. In Paper IV, a 11C-labelled AT2R ligand prepared via Pd(0)-mediated aminocarbonylation was used for autoradiography, biodistribution and small-animal PET studies.  Section 4 describes the development of a multicomponent method for the synthesis of 3,4-dihydroquinazolinones (Paper V). 31 3,4-dihydroquinazolinones were synthesized via a cyclic iminium ion.  
  •  
9.
  • Wilson, Alan A, et al. (författare)
  • Radiosynthesis and evaluation of [C-11-Carbonyl]-labeled carbamates as fatty acid amide hydrolase radiotracers for positron emission tomography
  • 2013
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 56:1, s. 201-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acid amide hydrolase (FAAH) plays a key role in regulating the tone of the endocannabinoid system. Radiotracers are required to image and quantify FAAH activity in vivo. We have synthesized a series of potent FAAH inhibitors encompassing two classes of N-alkyl-O-arylcarbamates and radiolabeled eight of them with carbon-11. The [C-11-carbonyl]-radiotracers were evaluated in vitro and ex vivo in rats as potential FAAH imaging agents for positron emission tomography (PET). Both sets of [C-11] O-arylcarbamates showed good to excellent brain penetration and an appropriate regional distribution. Pretreatments with a FAAH inhibitor demonstrated that 80-95% of brain uptake of radioactivity constituted binding of the radiotracers to FAAH. Brain extraction measurements showed that binding to FAAH was irreversible and kinetically different for the two classes of carbamates. These promising results are discussed in terms of the requirements of a suitable radiotracer for the in vivo imaging of FAAH using PET.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy