SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vasilakos Sozon) "

Sökning: WFRF:(Vasilakos Sozon)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanelli, Maria, et al. (författare)
  • Microbial Production of Violacein and Process Optimization for Dyeing Polyamide Fabrics With Acquired Antimicrobial Properties
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, crude bacterial extract containing violacein is investigated for the preparation of antimicrobial polyamide fabrics. The optimal culture conditions of Janthinobacterium lividum (JL) for maximum biomass and violacein production were found to be 25°C, pH 7.0, while the addition of ampicillin of 0.2 mg mL-1 in the small scale increased violacein production 1.3-fold. In scale-up trials, the addition of 1% (v/v) glycerol in a fed-batch bioreactor, resulted in fivefold extracted crude violacein increase with final concentration of 1.828 g L-1. Polyamide 6.6 fabrics were dyed following three different processes; through simultaneous fermentation and dyeing (SFD), by incubating the fabric in the sonicated bacterial culture after fermentation and by using cell-free extract containing violacein. Maximum color change (ΔE) and color strength (K/S) obtained for SFD fabrics were 74.81 and 22.01, respectively, while no alteration of fastness and staining of dye at acid and alkaline perspiration or at water was indicated. The dyed fabrics presented significant antifungal activity against Candida albicans, C. parapsilosis, and C. krusei, as well as antibacterial properties against Escherichia coli, Staphylococcus aureus, and the S. aureus MRSA. We have shown that J. lividum cultures can be successfully used for violacein production and for simultaneous dying of fabrics resulting in dyed fabrics with antimicrobial properties without utilization of organic solvents.
  •  
2.
  • Kanelli, Maria, et al. (författare)
  • Surface modification of poly(ethylene terephthalate) (PET) fibers by a cutinase from Fusarium oxysporum
  • 2015
  • Ingår i: Process Biochemistry. - : Elsevier BV. - 1359-5113 .- 1873-3298. ; 50:11, s. 1885-1892
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic polyester fabrics occupy a great part of the textile industry production satisfying variable ordinary needs. Nonetheless, their high hydrophobicity constitutes an important weakness that impedes process manufacture, as well as permeability and evaporation of sweat when used in clothing industry. The enzymatic treatment of these materials is a modern and eco-friendly procedure that aims at the increase of the hydrophilicity through superficial modification. In this study, the enzymatic surface hydrolysis of poly(ethylene terephthalate) (PET) fabric is succeeded using a recombinant cutinase from Fusarium oxysporum. The effect of various parameters is studied for the enzymatic modification of PET, such as temperature, pH, enzyme loading and reaction time. The optimal parameters are found to be 40 °C, pH 8, and 1.92 mg enzyme loading per gram of fabric. The controlled enzymatic hydrolysis of PET textile is further confirmed and characterized using various spectroscopic and analytical methods, including Fourier Transform Infrared (FT-IR) in the Attenuated Total Reflectance mode (ATR) and X-ray photoelectron spectroscopy (XPS). Tensile test and dyeability analyses were also employed achieving a K/S increase up to 150%, confirming the successful surface modification without degrading the quality of the starting material.
  •  
3.
  • Kanelli, Maria, et al. (författare)
  • Surface modification of polyamide 6.6 fibers by enzymatic hydrolysis
  • 2016
  • Ingår i: Process Biochemistry. - : Elsevier BV. - 1359-5113 .- 1873-3298. ; 59 A, s. 97-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic fibers are used extensively in textile industry, however, their high hydrophobicity is a drawback that needs to be considered. The decrease of hydrophobicity can be achieved via a ‘green” root using enzymes as biocatalysts. In this study, the enzymatic surface modification of polyamide (PA) 6.6 fabric was studied with the use of the commercial protease Alcalase 2.4 L at optimal conditions. The modified fabrics were studied via dyeing parameters K/S and ΔΕ values. For treatment at 40–60 °C and pH 8 ΔE was found to be approximately 14 and K/S was 1.24-fold increased. Additionally, the enzymatic surface modification of PA textile was justified using different spectroscopy techniques, such as FTIR-ATR and XPS. FTIR-ATR indicated alterations of Cdouble bond; length as m-dashO and N-H band intensities, while via XPS, there proved to be differences in relative intensities of carbon component peaks. Finally, thermogravimetric and mechanical tests were also conducted to prove the non-degradation of the properties of the bulk material. In conclusion, the investigated enzymatic process increased the hydrophilicity with 2.7-fold increased water absorbency and 1.24-fold enhanced color strength of PA textiles, while maintaining the thermal and mechanical properties of the bulk synthetic material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy