SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vatanen P) "

Sökning: WFRF:(Vatanen P)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Stewart, Christopher J., et al. (författare)
  • Temporal development of the gut microbiome in early childhood from the TEDDY study
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7728, s. 583-588
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial–immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1–9 such as persistent islet autoimmunity and type 1 diabetes10–12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3–14), a transitional phase (months 15–30), and a stable phase (months 31–46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case–control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial–immune crosstalk for long-term health.
  •  
3.
  •  
4.
  • Vatanen, Tommi, et al. (författare)
  • The human gut microbiome in early-onset type 1 diabetes from the TEDDY study
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7728, s. 589-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is an autoimmune disease that targets pancreatic islet beta cells and incorporates genetic and environmental factors1, including complex genetic elements2, patient exposures3 and the gut microbiome4. Viral infections5 and broader gut dysbioses6 have been identified as potential causes or contributing factors; however, human studies have not yet identified microbial compositional or functional triggers that are predictive of islet autoimmunity or T1D. Here we analyse 10,913 metagenomes in stool samples from 783 mostly white, non-Hispanic children. The samples were collected monthly from three months of age until the clinical end point (islet autoimmunity or T1D) in the The Environmental Determinants of Diabetes in the Young (TEDDY) study, to characterize the natural history of the early gut microbiome in connection to islet autoimmunity, T1D diagnosis, and other common early life events such as antibiotic treatments and probiotics. The microbiomes of control children contained more genes that were related to fermentation and the biosynthesis of short-chain fatty acids, but these were not consistently associated with particular taxa across geographically diverse clinical centres, suggesting that microbial factors associated with T1D are taxonomically diffuse but functionally more coherent. When we investigated the broader establishment and development of the infant microbiome, both taxonomic and functional profiles were dynamic and highly individualized, and dominated in the first year of life by one of three largely exclusive Bifidobacterium species (B. bifidum, B. breve or B. longum) or by the phylum Proteobacteria. In particular, the strain-specific carriage of genes for the utilization of human milk oligosaccharide within a subset of B. longum was present specifically in breast-fed infants. These analyses of TEDDY gut metagenomes provide, to our knowledge, the largest and most detailed longitudinal functional profile of the developing gut microbiome in relation to islet autoimmunity, T1D and other early childhood events. Together with existing evidence from human cohorts7,8 and a T1D mouse model9, these data support the protective effects of short-chain fatty acids in early-onset human T1D.
  •  
5.
  • Wilson, Brooke C., et al. (författare)
  • Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section : A pilot randomised placebo-controlled trial
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Birth by caesarean section (CS) is associated with aberrant gut microbiome development and greater disease susceptibility later in life. We investigated whether oral administration of maternal vaginal microbiota to infants born by CS could restore their gut microbiome development in a pilot single-blinded, randomised placebo-controlled trial (Australian New Zealand Clinical Trials Registry, ACTRN12618000339257).Methods: Pregnant women scheduled for a CS underwent comprehensive antenatal pathogen screening. At birth, healthy neonates were randomised to receive a 3 ml solution of either maternal vaginal microbes (CSseeded, n = 12) or sterile water (CS-placebo, n = 13). Vaginally-born neonates were used as the reference control (VB, n = 22). Clinical assessments occurred within the first 2 h of birth, and at 1 month and 3 months of age. Infant stool samples and maternal vaginal extracts from CS women underwent shotgun metagenomic sequencing. The primary outcome was gut microbiome composition at 1 month of age. Secondary outcomes included maternal strain engraftment, functional potential of the gut microbiome, anthropometry, body composition, and adverse events.Findings: Despite the presence of viable microbial cells within transplant solutions, there were no observed differences in gut microbiome composition or functional potential between CS-seeded and CS-placebo infants at 1 month or 3 months of age. Both CS groups displayed the characteristic signature of low Bacteroides abundance, which contributed to a number of biosynthesis pathways being underrepresented when compared with VB microbiomes. Maternal vaginal strain engraftment was rare. Vaginal seeding had no observed effects on anthropometry or body composition. There were no serious adverse events associated with treatment.Interpretation: Our pilot findings question the value of vaginal seeding given that oral administration of maternal vaginal microbiota did not alter early gut microbiome development in CS-born infants. The limited colonisation of maternal vaginal strains suggest that other maternal sources, such as the perianal area, may play a larger role in seeding the neonatal gut microbiome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy