SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vaverka Jakub) "

Sökning: WFRF:(Vaverka Jakub)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Spiegeleer, Alexandre, et al. (författare)
  • Low-frequency oscillatory flow signatures and high-speed flows in the Earth's magnetotail
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - Washington : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:7, s. 7042-7056
  • Tidskriftsartikel (refereegranskat)abstract
    • Using plasma sheet data from Cluster 1 spacecraft from 2001 till 2011, we statistically investigate oscillatory signatures in the plasma bulk flow. These periodic oscillations are compared to high-speed and quiet flows. Periodic oscillations are observed approximately 8% of the time, while high-speed flows and quiet flows are observed around 0.5% and 12% of the time, respectively. We remark that periodic oscillations can roughly occur everywhere for x(gsm) < -10 R-E and |y(gsm)| < 10 RE, while quiet flows mainly occur toward the flanks of this region and toward x = -10 R-E. The relation between the geomagnetic and solar activity and the occurrence of periodic oscillations is investigated and reveal that periodic oscillations occur for most Kp values and solar activity, while quiet flows are more common during low magnetospheric and solar activity. We find that the median oscillation frequency of periodic oscillations is 1.7 mHz and the median duration of the oscillation events is 41 min. We also observe that their associated Poynting vectors show a tendency to be earthward (S-x >= 0). Finally, the distribution of high-speed flows and periodic oscillations as a function of the velocity is investigated and reveals that thresholds lower than 200 km/s should not be used to identify high-speed flows as it could result in misinterpreting a periodic oscillations for a high-speed flow.
  •  
2.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
3.
  • Nemecek, Z., et al. (författare)
  • Secondary Electron Emission And Its Role in the Space Environment
  • 2018
  • Ingår i: DIVERSE WORLD OF DUSTY PLASMAS. - : AMER INST PHYSICS. - 9780735416178
  • Konferensbidrag (refereegranskat)abstract
    • The role of dust in the space environment is of increasing interest in recent years and also the fast development of fusion devices with a magnetic confinement brought new issues in the plasma surface interaction. Among other processes, secondary electron emission plays an important role for dust charging in interplanetary space and its importance increases at and above the surfaces of airless bodies like planets, moons, comets or asteroids. A similar situation can be found in many industrial applications where the dust is a final product or an unintentional impurity. The present paper reviews the progress in laboratory investigations of the secondary emission process as well as an evolution of the modeling of the interaction of energetic electrons with dust grains of different materials and sizes. The results of the model are discussed in view of latest laboratory simulations and they are finally applied on the estimation of an interaction of the solar wind and magnetospheric plasmas with the dust attached to or levitating above the lunar surface.
  •  
4.
  • Vaverka, Jakub, et al. (författare)
  • Comparison of Dust Impact and Solitary Wave Signatures Detected by Multiple Electric Field Antennas Onboard the MMS Spacecraft
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:8, s. 6119-6129
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust impact detection by electric field instruments is a relatively new method. However, the influence of dust impacts on electric field measurements is not completely understood and explained. A better understanding is very important for reliable dust impact identification, especially in environments with low dust impact rate. Using data from Earth-orbiting Magnetospheric Multiscale mission (MMS) spacecraft, we present a study of various pulses detected simultaneously by multiple electric field antennas in the monopole (probe-to-spacecraft potential measurement) and dipole (probe-to-probe potential measurement) configurations. The study includes data obtained during an impact of a millimeter-sized object. We show that the identification of dust impacts by a single antenna is a very challenging issue in environments where solitary waves are commonly present and that some pulses can be easily misinterpreted as dust impacts. We used data from multiple antennas to distinguish between changes in the spacecraft potential (dust impact) and structures in the ambient plasma or electric field. Our results indicate that an impact cloud is in some cases able to influence the potential of the electric field antenna during its expansion.
  •  
5.
  • Vaverka, Jakub, et al. (författare)
  • Detection of EMPs generated by meteoroid impacts on the MMS spacecraft and problems with signal interpretation
  • 2017
  • Ingår i: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). - : IEEE. - 9789082598704
  • Konferensbidrag (refereegranskat)abstract
    • Signatures of hypervelocity dust impacts detected by electric field instruments are still not completely understood. We have used the electric field instrument onboard one of the MMS spacecraft orbiting the Earth since 2015 to study various pulses in the measured electric field detected simultaneously by multiple antennas. This unique instrument allows a detailed investigation of registered waveforms. The preliminary results shown that the solitary waves can generate similar pulses as dust impacts and detected pulses can easily by misinterpreted when only one antenna is used.
  •  
6.
  • Vaverka, Jakub, et al. (författare)
  • Detection of meteoroid hypervelocity impacts on the Cluster spacecraft : First results
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:6, s. 6485-6494
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first study of dust impact events on one of the Earth-orbiting Cluster satellites. The events were identified in the measurements of the wide band data (WBD) instrument on board the satellite operating in monopole configuration. Since 2009 the instrument is operating in this configuration due to the loss of three electric probes and is therefore measuring the potential between the only operating antenna and the spacecraft body. Our study shows that the WBD instrument on Cluster 1 is able to detect pulses generated by dust impacts and discusses four such events. The presence of instrumental effects, intensive natural waves, noncontinuous sampling modes, and the automatic gain control complicates this detection. Due to all these features, we conclude that the Cluster spacecraft are not ideal for dust impact studies. We show that the duration and amplitudes of the pulses recorded by Cluster are similar to pulses detected by STEREO, and the shape of the pulses can be described with the model of the recollection of impact cloud electrons by the positively charged spacecraft. We estimate that the detected impacts were generated by micron-sized grains with velocities in the order of tens of km/s.
  •  
7.
  • Vaverka, Jakub, et al. (författare)
  • Ion Cloud Expansion after Hyper-velocity Dust Impacts Detected by the Magnetospheric Multiscale Mission Electric Probes in the Dipole Configuration
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 921:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust impact detection by electric field instruments is a well-established technique. On the other hand, not all aspects of signal generation by dust impacts are completely understood. We present a study of events related to dust impacts on the spacecraft body detected by electric field probes operating simultaneously in the monopole (probe-to-spacecraft potential measurement) and dipole (probe-to-probe potential measurement) configurations by the Earth-orbiting Magnetospheric Multiscale mission spacecraft. This unique measurement allows us to investigate connections between monopole and dipole data. Our analysis shows that the signal detected by the electric field instrument in a dipole configuration is generated by an ion cloud expanding along the electric probes. In this case, expanding ions affect not only the potential of the spacecraft body but also one or more electric probes at the end of antenna booms. Electric probes located far from the spacecraft body can be influenced by an ion cloud only when the spacecraft is located in tenuous ambient plasma inside of the Earth's magnetosphere. Derived velocities of the expanding ions on the order of tens of kilometers per second are in the range of values measured experimentally in the laboratory.
  •  
8.
  • Vaverka, Jakub, et al. (författare)
  • Lunar surface and dust grain potentials during the earth's magnetosphere crossing
  • 2016
  • Ingår i: Astrophysical Journal. - Bristol : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 825:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.
  •  
9.
  • Vaverka, Jakub, et al. (författare)
  • Potential of Earth Orbiting Spacecraft Influenced by Meteoroid Hypervelocity Impacts
  • 2017
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 45:8, s. 2048-2055
  • Tidskriftsartikel (refereegranskat)abstract
    • Detection of hypervelocity impacts on a spacecraft body using electric field instruments has been established as a new method for monitoring of dust grains in our solar system. Voyager, WIND, Cassini, and STEREO spacecraft have shown that this technique can be a complementary method to conventional dust detectors. This approach uses fast short time changes in the spacecraft potential generated by hypervelocity dust impacts, which can be detected by monopole electric field instruments as a pulse in the measured electric field. The shape and the duration of the pulse strongly depend on parameters of the ambient plasma environment. This fact is very important for Earth orbiting spacecraft crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly. We present the numerical simulations of spacecraft charging focused on changes in the spacecraft potential generated by dust impacts in various locations of the Earth's magnetosphere. We show that identical dust impacts generate significantly larger pulses in regions with lower electron density. We discuss the influence of the photoelectron distribution for dust impact detections showing that a small amount of energetic photoelectrons significantly increases the potential of the spacecraft body and the pulse duration. We also show that the active spacecraft potential control (ASPOC) instrument onboard the cluster spacecraft strongly reduces the amplitude and the duration of the pulse resulting in difficulties of dust detection when ASPOC is ON. Simulation of dust impacts is compared with pulses detected by the Earth orbiting cluster spacecraft in the last part of Section III.
  •  
10.
  • Vaverka, Jakub, et al. (författare)
  • Spacecraft potential influenced by meteoroid hypervelocity impacts
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Detection of hypervelocity impacts on a spacecraft body using electric field instruments has been established as a new method for monitoring of dust grains in our solar system. Voyager, WIND, Cassini, and STEREO spacecraft have shown that this technique can be a complementary method to conventional dust detectors. This approach uses fast short time changes in the spacecraft potential generated by hypervelocity dust impacts, which can be detected by monopole electric field instruments as a pulse in the measured electric field. The shape and the duration of the pulse strongly depend on parameters of the ambient plasma environment. This fact is very important for Earth orbiting spacecraft crossing various regions of the Earth's magnetosphere where the concentration and the temperature of plasma particles change significantly. We present the numerical simulations of spacecraft charging focused on changes in the spacecraft potential generated by dust impacts in various locations of the Earth's magnetosphere. We show that identical dust impacts generate significantly larger pulses in regions with lower electron density. We discuss the influence of the photoelectron distribution for dust impact detections showing that a small amount of energetic photoelectrons significantly increases the potential of the spacecraft body and the pulse duration. We also show that the active spacecraft potential control (ASPOC) instrument onboard the cluster spacecraft strongly reduces the amplitude and the duration of the pulse resulting in difficulties of dust detection when ASPOC is ON. Simulation of dust impacts is compared with pulses detected by the Earth orbiting cluster spacecraft in the last part of Section III.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy