SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Veerasimman Arumugaprabu) "

Sökning: WFRF:(Veerasimman Arumugaprabu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shanmugam, Vigneshwaran, et al. (författare)
  • Experimental Investigation of Thrust Force, Delamination and Surface Roughness in Drilling Hybrid Structural Composites
  • 2021
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 14:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites’ machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.
  •  
2.
  • Shanmugam, Vigneshwaran, et al. (författare)
  • Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials
  • 2021
  • Ingår i: International Journal of Fatigue. - : Elsevier BV. - 0142-1123 .- 1879-3452. ; 143
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-based materials are increasingly produced through fused deposition modelling (FDM) - an additive manufacturing process, due to its intrinsic advantages in manufacturing complex shapes and structures at low overhead costs. The versatility of this technology has attracted several industries to print complex geometrical structures. This underlines the importance of studying the mechanical strength of FDM printed polymeric materials, especially their fatigue behaviour in cyclic loading conditions. Conventionally manufactured polymeric materials (e.g. injection moulding) have superior fatigue performance than FDM printed materials. Unlike conventionally manufactured polymers, FDM-made polymers have layer by layer adhesion and the influence of printing parameters make fatigue analysis complex and critical. The influences of printing parameters and printing material characteristics have a significant impact on the fatigue behaviour of these materials. The underlying mechanism behind the fatigue of FDM printed polymers is crucial for the assessment of these materials in structural applications. However, the fatigue behaviour of FDM printed polymeric materials has not been reviewed in detail. Therefore, this article aims to evaluate 3D printed polymeric materials' fatigue properties. The importance of fatigue in the FDM printed biomedical materials is also reviewed, and more importantly, the novel FDM printed architected cellular material fatigue properties are also introduced.
  •  
3.
  • Shanmugam, Vigneshwaran, et al. (författare)
  • The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing
  • 2021
  • Ingår i: Polymer testing. - : Elsevier. - 0142-9418 .- 1873-2348. ; 93
  • Forskningsöversikt (refereegranskat)abstract
    • The development of fibre composites in recent years has been remarkably strong, owing to their high performance and durability. Various advancements in fibre composites are emerging because of their increased use in a myriad of applications. One of the popular processing methods is additive manufacturing (AM), however, polymer-fibre composites manufactured through AM have a significantly lower strength compared to the conventional manufacturing processes, for instance, injection moulding. This article is a comprehensive review of the mechanical testing and performance analysis of polymer-fibre composites fabricated through AM, in particular fused deposition modelling (FDM). The review highlights the effect of the various processing parameters, involved in the FDM of polymer-fibre composites, on the observed mechanical properties. In addition, the thermal properties of FDM based fibre composites are also briefly reviewed. Overall, the review article has been structured to provide an impetus for researchers in the concerned engineering domain to gain an insight into the mechanical properties of fibre-reinforced polymeric composites manufactured through AM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy