SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Velagapudi Vidya R) "

Sökning: WFRF:(Velagapudi Vidya R)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • López, Miguel, et al. (författare)
  • Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
  • 2010
  • Ingår i: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 16:9, s. 1001-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
  •  
2.
  • Gopalacharyulu, Peddinti V., et al. (författare)
  • Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast
  • 2009
  • Ingår i: Molecular Biosystems. - : Royal Society of Chemistry. - 1742-206X .- 1742-2051. ; 5:3, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to environmental challenges, biological systems respond with dynamic adaptive changes in order to maintain the functionality of the system. Such adaptations may lead to cumulative stress over time, possibly leading to global failure of the system. When studying such systems responses, it is therefore important to understand them in system-wide and dynamic context. Here we hypothesize that dynamic changes in the topology of functional modules of integrated biological networks reflect their activity under specific environmental challenges. We introduce topological enrichment analysis of functional subnetworks (TEAFS), a method for the analysis of integrated molecular profile and interactome data, which we validated by comprehensive metabolomic analysis of dynamic yeast response under oxidative stress. TEAFS identified activation of multiple stress response related mechanisms, such as lipid metabolism and phospholipid biosynthesis. We identified, among others, a fatty acid elongase IFA38 as a hub protein which was absent at all time points under oxidative stress conditions. The deletion mutant of the IFA38 encoding gene is known for the accumulation of ceramides. By applying a comprehensive metabolomic analysis, we confirmed the increased concentrations over time of ceramides and palmitic acid, a precursor of de novo ceramide biosynthesis. Our results imply that the connectivity of the system is being dynamically modulated in response to oxidative stress, progressively leading to the accumulation of (lipo)toxic lipids such as ceramides. Studies of local network topology dynamics can be used to investigate as well as predict the activity of biological processes and the system's responses to environmental challenges and interventions.
  •  
3.
  • Hall, Diana, et al. (författare)
  • Peroxisomal and microsomal lipid pathways associated with resistance to hepatic steatosis and reduced pro-inflammatory state
  • 2010
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 285:40, s. 31011-31023
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.
  •  
4.
  • Kolak, Maria, et al. (författare)
  • Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:8, s. 1960-1968
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We sought to determine whether adipose tissue is inflamed in individuals with increased liver fat (LFAT) independently of obesity.RESEARCH DESIGN AND METHODS: A total of 20 nondiabetic, healthy, obese women were divided into normal and high LFAT groups based on their median LFAT level (2.3 +/- 0.3 vs. 14.4 +/- 2.9%). Surgical subcutaneous adipose tissue biopsies were studied using quantitative PCR, immunohistochemistry, and a lipidomics approach to search for putative mediators of insulin resistance and inflammation. The groups were matched for age and BMI. The high LFAT group had increased insulin (P = 0.0025) and lower HDL cholesterol (P = 0.02) concentrations.RESULTS: Expression levels of the macrophage marker CD68, the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha, and plasminogen activator inhibitor-1 were significantly increased, and those of peroxisome proliferator-activated receptor-gamma and adiponectin decreased in the high LFAT group. CD68 expression correlated with the number of macrophages and crown-like structures (multiple macrophages fused around dead adipocytes). Concentrations of 154 lipid species in adipose tissue revealed several differences between the groups, with the most striking being increased concentrations of triacylglycerols, particularly long chain, and ceramides, specifically Cer(d18:1/24:1) (P = 0.01), in the high LFAT group. Expression of sphingomyelinases SMPD1 and SMPD3 were also significantly increased in the high compared with normal LFAT group.CONCLUSIONS: Adipose tissue is infiltrated with macrophages, and its content of long-chain triacylglycerols and ceramides is increased in subjects with increased LFAT compared with equally obese subjects with normal LFAT content. Ceramides or their metabolites could contribute to adverse effects of long-chain fatty acids on insulin resistance and inflammation.
  •  
5.
  • Prawitt, Janne, et al. (författare)
  • Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:7, s. 1861-1871
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.RESEARCH DESIGN AND METHODS: Here, we evaluate the consequences of FXR deficiency on body weight development, lipid metabolism, and insulin resistance in murine models of genetic and diet-induced obesity.RESULTS: FXR deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved as a result of an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated as a result of the repression of β-oxidation genes. In agreement, liver-specific FXR deficiency did not protect from diet-induced obesity and insulin resistance, indicating a role for nonhepatic FXR in the control of glucose homeostasis in obesity. Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXR-dependent manner, indicating that the observed improvements by FXR deficiency are not a result of indirect effects of altered BA metabolism.CONCLUSIONS: Overall, FXR deficiency in obesity beneficially affects body weight development and glucose homeostasis.
  •  
6.
  • Prieur, Xavier, et al. (författare)
  • Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 60:3, s. 797-809
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Obesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response.RESEARCH DESIGN AND METHODS: We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment.RESULTS: We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam cell-like cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization.CONCLUSIONS: Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.
  •  
7.
  • Rodriguez-Cuenca, Sergio, et al. (författare)
  • Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility
  • 2012
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 32:8, s. 1555-1565
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal lipid storage and mobilization are essential for efficient adipose tissue. Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) regulates adipocyte differentiation and lipid deposition, but its role in lipolysis and dysregulation in obesity is not well defined. This investigation aimed to understand the molecular impact of dysfunctional PPARγ on the lipolytic axis and to explore whether these defects are also confirmed in common forms of human obesity. For this purpose, we used the P465L PPARγ mouse as a model of dysfunctional PPARγ that recapitulates the human pparγ mutation (P467L). We demonstrated that defective PPARγ impairs catecholamine-induced lipolysis. This abnormal lipolytic response is exacerbated by a state of positive energy balance in leptin-deficient ob/ob mice. We identified the protein kinase A (PKA) network as a PPARγ-dependent regulatory node of the lipolytic response. Specifically, defective PPARγ is associated with decreased basal expression of prkaca (PKAcatα) and d-akap1, the lipase genes Pnplaz (ATGL) and Lipe (HSL), and lipid droplet protein genes fsp27 and adrp in vivo and in vitro. Our data indicate that PPARγ is required for activation of the lipolytic regulatory network, dysregulation of which is an important feature of obesity-induced insulin resistance in humans.
  •  
8.
  • Sysi-Aho, Marko, et al. (författare)
  • Exploring the lipoprotein composition using Bayesian regression on serum lipidomic profiles
  • 2007
  • Ingår i: Bioinformatics. - : Oxford University Press. - 1367-4803 .- 1367-4811 .- 1460-2059. ; 23:13, s. i519-i528
  • Tidskriftsartikel (refereegranskat)abstract
    • MOTIVATION: Serum lipids have been traditionally studied in the context of lipoprotein particles. Today's emerging lipidomics technologies afford sensitive detection of individual lipid molecular species, i.e. to a much greater detail than the scale of lipoproteins. However, such global serum lipidomic profiles do not inherently contain any information on where the detected lipid species are coming from. Since it is too laborious and time consuming to routinely perform serum fractionation and lipidomics analysis on each lipoprotein fraction separately, this presents a challenge for the interpretation of lipidomic profile data. An exciting and medically important new bioinformatics challenge today is therefore how to build on extensive knowledge of lipid metabolism at lipoprotein levels in order to develop better models and bioinformatics tools based on high-dimensional lipidomic data becoming available today.RESULTS: We developed a hierarchical Bayesian regression model to study lipidomic profiles in serum and in different lipoprotein classes. As a background data for the model building, we utilized lipidomic data for each of the lipoprotein fractions from 5 subjects with metabolic syndrome and 12 healthy controls. We clustered the lipid profiles and applied a regression model within each cluster separately. We found that the amount of a lipid in serum can be adequately described by the amounts of lipids in the lipoprotein classes. In addition to improved ability to interpret lipidomic data, we expect that our approach will also facilitate dynamic modelling of lipid metabolism at the individual molecular species level.
  •  
9.
  • Velagapudi, Vidya R., et al. (författare)
  • The gut microbiota modulates host energy and lipid metabolism in mice
  • 2009
  • Ingår i: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 51:5, s. 1101-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut microbiota has recently been identified as an environmental factor that may promote metabolic diseases. To investigate the effect of gut microbiota on host energy and lipid metabolism, we compared the serum metabolome and the lipidomes of serum, adipose tissue, and liver of conventionally raised (CONV-R) and germ-free mice. The serum metabolome of CONV-R mice was characterized by increased levels of energy metabolites e.g. pyruvic acid, citric acid, fumaric acid, and malic acid while levels of cholesterol and fatty acids were reduced. We also showed that the microbiota modified a number of lipid species in the serum, adipose tissue and liver, with its greatest effect on triglyceride and phosphatidylcholine species. Triglyceride levels were lower in serum but higher in adipose tissue and liver of CONV-R mice, consistent with increased lipid clearance. Our findings show that the gut microbiota affects both host energy and lipid metabolism, and highlights its role in the development of metabolic diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy