SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Velasco Sergio 1980) "

Sökning: WFRF:(Velasco Sergio 1980)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feizi, Amir, 1980, et al. (författare)
  • Genome-Scale Modeling of the Protein Secretory Machinery in Yeast
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein secretory machinery in Eukarya is involved in post-translational modification (PTMs) and sorting of the secretory and many transmembrane proteins. While the secretory machinery has been well-studied using classic reductionist approaches, a holistic view of its complex nature is lacking. Here, we present the first genome-scale model for the yeast secretory machinery which captures the knowledge generated through more than 50 years of research. The model is based on the concept of a Protein Specific Information Matrix (PSIM: characterized by seven PTMs features). An algorithm was developed which mimics secretory machinery and assigns each secretory protein to a particular secretory class that determines the set of PTMs and transport steps specific to each protein. Protein abundances were integrated with the model in order to gain system level estimation of the metabolic demands associated with the processing of each specific protein as well as a quantitative estimation of the activity of each component of the secretory machinery.
  •  
2.
  • Feizi, Amir, 1980, et al. (författare)
  • Metabolic and protein interaction sub-networks controlling the proliferation rate of cancer cells and their impact on patient survival
  • 2013
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells can have a broad scope of proliferation rates. Here we aim to identify the molecular mechanisms that allow some cancer cell lines to grow up to 4 times faster than other cell lines. The correlation of gene expression profiles with the growth rate in 60 different cell lines has been analyzed using several genome- scale biological networks and new algorithms. New possible regulatory feedback loops have been suggested and the known roles of several cell cycle related transcription factors have been confirmed. Over 100 growth- correlated metabolic sub-networks have been identified, suggesting a key role of simultaneous lipid synthesis and degradation in the energy supply of the cancer cells growth. Many metabolic sub-networks involved in cell line proliferation appeared also to correlate negatively with the survival expectancy of colon cancer patients.
  •  
3.
  • Antanaviciute, I., et al. (författare)
  • Transcriptional hallmarks of cancer cell lines reveal an emerging role of branched chain amino acid catabolism
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 7:1, s. Article no 7820 -
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparative analysis between cancer cell lines and healthy dividing cells was performed using data (289 microarrays and 50 RNA-seq samples) from 100 different cancer cell lines and 6 types of healthy stem cells. The analysis revealed two large-scale transcriptional events that characterize cancer cell lines. The first event was a large-scale up-regulation pattern associated to epithelial-mesenchymal transition, putatively driven by the interplay of the SP1 transcription factor and the canonical Wnt signaling pathway; the second event was the failure to overexpress a diverse set of genes coding membrane and extracellular proteins. This failure is putatively caused by a lack of activity of the AP-1 complex. It was also shown that the epithelial-mesenchymal transition was associated with the up-regulation of 5 enzymes involved in the degradation of branched chain amino acids. The suitability of silencing one of this enzymes (branched chain amino acid transaminase 2; BCAT2) with therapeutic effects was tested experimentally on the breast cancer cell line MCF-7 and primary cell culture of breast tumor (BCC), leading to lower cell proliferation. The silencing of BCAT2 did not have any significant effect on ASM and MCF10A cells, which were used as models of healthy dividing cells.
  •  
4.
  • Borgos, S., et al. (författare)
  • Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling
  • 2013
  • Ingår i: BMC Systems Biology. - : Springer Science and Business Media LLC. - 1752-0509. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAlginate is an industrially important polysaccharide, currently produced commercially by harvesting of marine brown sea-weeds. The polymer is also synthesized as an exo-polysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter, and these organisms may represent an alternative alginate source in the future. The current work describes an attempt to rationally develop a biological system tuned for very high levels of alginate production, based on a fundamental understanding of the system through metabolic modeling supported by transcriptomics studies and carefully controlled fermentations.ResultsAlginate biosynthesis in Pseudomonas fluorescens was studied in a genomics perspective, using an alginate over-producing strain carrying a mutation in the anti-sigma factor gene mucA. Cells were cultivated in chemostats under nitrogen limitation on fructose or glycerol as carbon sources, and cell mass, growth rate, sugar uptake, alginate and CO2 production were monitored. In addition a genome scale metabolic model was constructed and samples were collected for transcriptome analyses. The analyses show that polymer production operates in a close to optimal way with respect to stoichiometric utilization of the carbon source and that the cells increase the uptake of carbon source to compensate for the additional needs following from alginate synthesis. The transcriptome studies show that in the presence of the mucA mutation, the alg operon is upregulated together with genes involved in energy generation, genes on both sides of the succinate node of the TCA cycle and genes encoding ribosomal and other translation-related proteins. Strains expressing a functional MucA protein (no alginate production) synthesize cellular biomass in an inefficient way, apparently due to a cycle that involves oxidation of NADPH without ATP production. The results of this study indicate that the most efficient way of using a mucA mutant as a cell factory for alginate production would be to use non-growing conditions and nitrogen deprivation.ConclusionsThe insights gained in this study should be very useful for a future efficient production of microbial alginates.
  •  
5.
  • Cvijovic, Marija, 1977, et al. (författare)
  • Mathematical models of cell factories: moving towards the core of industrial biotechnology
  • 2011
  • Ingår i: Microbial Biotechnology. - : Wiley. - 1751-7907 .- 1751-7915. ; 4:5, s. 572-584
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial biotechnology involves the utilization of cell factories for the production of fuels and chemicals. Traditionally, the development of highly productive microbial strains has relied on random mutagenesis and screening. The development of predictive mathematical models provides a new paradigm for the rational design of cell factories. Instead of selecting among a set of strains resulting from random mutagenesis, mathematical models allow the researchers to predict in silico the outcomes of different genetic manipulations and engineer new strains by performing gene deletions or additions leading to a higher productivity of the desired chemicals. In this review we aim to summarize the main modelling approaches of biological processes and illustrate the particular applications that they have found in the field of industrial microbiology.
  •  
6.
  • Hernandez, M., et al. (författare)
  • Modeling of VOC mass transfer in two-liquid phase stirred tank, biotrickling filter and airlift reactors
  • 2011
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 172:2-3, s. 961-969
  • Tidskriftsartikel (refereegranskat)abstract
    • A modeling framework based on general mass balances and transfer equations was here developed in order to compare the hexane mass transfer performance of two-liquid phase stirred tank reactor (SIR), airlift (ALR) and biotrickling filter (BTF) using silicone oil as model non-aqueous phase under abiotic conditions. This modeling approach resulted in an isomorphous expression for all configurations consisting of a parameter beta*(s) (characterizing the maximum fraction of VOC transferable from the gas to the aqueous phase) and the gradient established between the gas and the aqueous phase. The models were validated against experimental data (at empty bed residence times, EBRT, of 120, 60 and 40 s) exhibiting an overall goodness of fit of 0.98, 0.98 and 0.70 for the two-liquid phase STR, BTF and ALR, respectively. The two-liquid phase BTF exhibited the maximum value of beta*(s) (0.87-0.58), followed by the STR (0.77-0.49) and the ALR (0.23-0.19). Finally, a sensitivity analysis conducted in the two-liquid phase BTF showed that was more sensitive to changes in recirculating liquid flow rate than in the EBRT, confirming that the liquid flow rate is a key operational variable in BTF systems.
  •  
7.
  • Hong, Kuk-ki, 1976, et al. (författare)
  • Dynamic (13) C-labelling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains
  • 2012
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 12:7, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed a method for quantification of protein turnover using (13) C-labelled substrates combined with analysis of the labeling pattern of proteinogenic amino acids. Using this method the specific amino acid turnover rates between proteins and the pool of free amino acids were determined for eight different amino acids (alanine, valine, proline, aspartic acid, glycine, leucine, isoleucine and threonine) in two Saccharomyces cerevisiae strains (CEN.PK 113-7D and YSBN2). Furthermore, proteasome activities were compared for both strains. Both results confirmed the hypothesis of a higher protein turnover rates in CEN.PK 113-7D, which was generated in a previous comparative systems biology study of these two yeast strains. The ATP costs associated with the observed differences in protein turnover were quantified and could explain accurately the differences in biomass yield between both strains that are observed in chemostat cultures. The percent of maintenance ATP associated to protein polymerization (polymerization for growth and re-polymerization due to turnover) and degradation was estimated to be 72% for YSBN2 and 79% for CEN.PK 113-7D, which makes these processes the dominant non-biosynthetic drain of ATP in living cells, and hence it represents an energetic parameter of great relevance.
  •  
8.
  • Liu, Liming, 1976, et al. (författare)
  • Use of genome-scale metabolic models for understanding microbial physiology
  • 2010
  • Ingår i: FEBS Letters. - : Wiley. - 1873-3468 .- 0014-5793. ; 584:12, s. 2556-2564
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploitation of microorganisms in industrial, medical, food and environmental biotechnology requires a comprehensive understanding of their physiology. The availability of genome sequences and accumulation of high-throughput data allows gaining understanding of microbial physiology at the systems level, and genome-scale metabolic models represent a valuable framework for integrative analysis of metabolism of microorganisms. Genome-scale metabolic models are reconstructed based on a combination of genome sequence information and detailed biochemical information, and these reconstructed models can be used for analyzing and simulating the operation of metabolism in response to different stimuli. Here we discuss the requirement for having detailed physiological insight in order to exploit microorganisms for production of fuels, chemicals and pharmaceuticals. We further describe the reconstruction process of genome-scale metabolic models and different algorithms that can be used to apply these models to gain improved insight into microbial physiology. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
  •  
9.
  • Marien, E., et al. (författare)
  • Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 137:7, s. 1539-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. What's new? Cellular membranes are subject to extensive modification in cancer, often with marked alterations in phospholipid metabolism. The extent and nature of those changes are not fully known, however, particularly for non-small cell lung cancer (NSCLC). In this study, lipidomics analysis of phospholipid profiles uncovered dramatic differences between NSCLC and normal lung tissue. The differences were confirmed via 2D-imaging lipidomics in tissue sections. Lipid markers capable of discriminating between tumor and normal tissue and between different NSCLC subtypes were identified. The observed alterations in NSCLC phospholipid profiles may be biologically significant.
  •  
10.
  • Martinez Ruiz, Jose Luis, 1981, et al. (författare)
  • Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology
  • 2014
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 14:4, s. 654-662
  • Tidskriftsartikel (refereegranskat)abstract
    • By performing an integrated comparative analysis on the physiology and transcriptome of four different S.cerevisiae strains growing on galactose and glucose, it was inferred that the transcription factors Bas1p, Pho2p, and Gcn4p play a central role in the regulatory events causing the Crabtree effect in S.cerevisiae. The analysis also revealed that a point mutation in the RAS2 observed in a galactose-adapted strain causes a lower Crabtree effect and growth rate on glucose by decreasing the activity of Gcn4p while at the same time is at the origin of higher growth rate on galactose due to a lower activity of the transcriptional repressor Sok2p. The role of Gcn4p on the trade-off effect observed on glucose was confirmed experimentally. This was done by showing that the point mutation in RAS2 does not result in a lower growth rate on glucose if it is introduced in a GCN4-negative background.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy