SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Velikyan Irina 1966 ) "

Sökning: WFRF:(Velikyan Irina 1966 )

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alhuseinalkhudhur, Ali, et al. (författare)
  • Human Epidermal Growth Factor Receptor 2-Targeting [68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer.
  • 2023
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 64:9, s. 1364-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging using the human epidermal growth factor receptor 2 (HER2)-binding tracer 68Ga-labeled ZHER2:2891-Cys-MMA-DOTA ([68Ga]Ga-ABY-025) was shown to reflect HER2 status determined by immunohistochemistry and in situ hybridization in metastatic breast cancer (MBC). This single-center open-label phase II study investigated how [68Ga]Ga-ABY-025 uptake corresponds to biopsy results and early treatment response in both primary breast cancer (PBC) planned for neoadjuvant chemotherapy and MBC. Methods: Forty patients with known positive HER2 status were included: 19 with PBC and 21 with MBC (median, 3 previous treatments). [68Ga]Ga-ABY-025 PET/CT, [18F]F-FDG PET/CT, and core-needle biopsies from targeted lesions were performed at baseline. [18F]F-FDG PET/CT was repeated after 2 cycles of therapy to calculate the directional change in tumor lesion glycolysis (Δ-TLG). The largest lesions (up to 5) were evaluated in all 3 scans per patient. SUVs from [68Ga]Ga-ABY-025 PET/CT were compared with the biopsied HER2 status and Δ-TLG by receiver operating characteristic analyses. Results: Trial biopsies were HER2-positive in 31 patients, HER2-negative in 6 patients, and borderline HER2-positive in 3 patients. The [68Ga]Ga-ABY-025 PET/CT cutoff SUVmax of 6.0 predicted a Δ-TLG lower than -25% with 86% sensitivity and 67% specificity in soft-tissue lesions (area under the curve, 0.74 [95% CI, 0.67-0.82]; P = 0.01). Compared with the HER2 status, this cutoff resulted in clinically relevant discordant findings in 12 of 40 patients. Metabolic response (Δ-TLG) was more pronounced in PBC (-71% [95% CI, -58% to -83%]; P < 0.0001) than in MBC (-27% [95% CI, -16% to -38%]; P < 0.0001), but [68Ga]Ga-ABY-025 SUVmax was similar in both with a mean SUVmax of 9.8 (95% CI, 6.3-13.3) and 13.9 (95% CI, 10.5-17.2), respectively (P = 0.10). In multivariate analysis, global Δ-TLG was positively associated with the number of previous treatments (P = 0.0004) and negatively associated with [68Ga]Ga-ABY-025 PET/CT SUVmax (P = 0.018) but not with HER2 status (P = 0.09). Conclusion: [68Ga]Ga-ABY-025 PET/CT predicted early metabolic response to HER2-targeted therapy in HER2-positive breast cancer. Metabolic response was attenuated in recurrent disease. [68Ga]Ga-ABY-025 PET/CT appears to provide an estimate of the HER2 expression required to induce tumor metabolic remission by targeted therapies and might be useful as an adjunct diagnostic tool.
  •  
2.
  • Alhuseinalkhudhur, Ali, et al. (författare)
  • Kinetic analysis of HER2-binding ABY-025 Affibody molecule using dynamic PET in patients with metastatic breast cancer
  • 2020
  • Ingår i: EJNMMI Research. - : SPRINGEROPEN. - 2191-219X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High expression of human epidermal growth factor receptor type 2 (HER2) represents an aggressive subtype of breast cancer. Anti-HER2 treatment requires a theragnostic approach wherein sufficiently high receptor expression in biopsy material is mandatory. Heterogeneity and discordance of HER2 expression between primary tumour and metastases, as well as within a lesion, present a complication for the treatment and require multiple biopsies. Molecular imaging using the HER2-targeting Affibody peptide ABY-025 radiolabelled with Ga-68-gallium for PET/CT is currently under investigation as a non-invasive tool for whole-body evaluation of metastatic HER2 expression. Initial studies demonstrated a high correlation between Ga-68-ABY-025 standardized uptake values (SUVs) and histopathology. However, detecting small liver lesions might be compromised by high background uptake. This study aimed to explore the applicability of kinetic modelling and parametric image analysis for absolute quantification of Ga-68-ABY-025 uptake and HER2-receptor expression and how that relates to static SUVs.Methods: Dynamic Ga-68-ABY-025 PET of the upper abdomen was performed 0-45 min post-injection in 16 patients with metastatic breast cancer. Five patients underwent two examinations to test reproducibility. Parametric images of tracer delivery (K-1) and irreversible binding (K-i) were created with an irreversible two-tissue compartment model and Patlak graphical analysis using an image-derived input function from the descending aorta. A volume of interest (VOI)-based analysis was performed to validate parametric images. SUVs were calculated from 2 h and 4 h post-injection static whole-body images and compared to K-i.Results: Characterization of HER2 expression in smaller liver metastases was improved using parametric images. K-i values from parametric images agreed very well with VOI-based gold standard (R-2 > 0.99, p < 0.001). SUVs of metastases at 2 h and 4 h post-injection were highly correlated with K-i values from both the two-tissue compartment model and Patlak method (R-2 = 0.87 and 0.95, both p < 0.001). Ga-68-ABY-025 PET yielded high test-retest reliability (relative repeatability coefficient for Patlak 30% and for the two-tissue compartment model 47%).Conclusion: Ga-68-ABY-025 binding in HER2-positive metastases was well characterized by irreversible two-tissue compartment model wherein K-i highly correlated with SUVs at 2 and 4 h. Dynamic scanning with parametric image formation can be used to evaluate metastatic HER2 expression accurately.
  •  
3.
  •  
4.
  • Bossart, Martin, et al. (författare)
  • Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist
  • 2022
  • Ingår i: Cell Metabolism. - : CELL PRESS. - 1550-4131 .- 1932-7420. ; 34:1, s. 59-
  • Tidskriftsartikel (refereegranskat)abstract
    • Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose -dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
  •  
5.
  • Eriksson, Olof, et al. (författare)
  • Assessment of glucagon receptor occupancy by Positron Emission Tomography in non-human primates
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 14960-
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucagon receptor (GCGR) is an emerging target in anti-diabetic therapy. Reliable biomarkers for in vivo activity on the GCGR, in the setting of dual glucagon-like peptide 1/glucagon (GLP-1/GCG) receptor agonism, are currently unavailable. Here, we investigated [68Ga]Ga-DO3A-S01-GCG as a biomarker for GCGR occupancy in liver, the tissue with highest GCGR expression, in non-human primates (NHP) by PET. [68Ga]Ga-DO3A-S01-GCG was evaluated by dynamic PET in NHPs by a dose escalation study design, where up to 67 µg/kg DO3A-S01-GCG peptide mass was co-injected. The test-retest reproducibility of [68Ga]Ga-DO3A-S01-GCG binding in liver was evaluated. Furthermore, we investigated the effect of pre-treatment with acylated glucagon agonist 1-GCG on [68Ga]Ga-DO3A-S01-GCG binding in liver. [68Ga]Ga-DO3A-S01-GCG bound to liver in vivo in a dose-dependent manner. Negligible peptide mass effect was observed for DO3A-S01-GCG doses <0.2 µg/kg. In vivo Kd for [68Ga]Ga-DO3A-S01-GCG corresponded to 0.7 µg/kg, which indicates high potency. The test-retest reproducibility for [68Ga]Ga-DO3A-S01-GCG binding in liver was 5.7 ± 7.9%. Pre-treatment with 1-GCG, an acylated glucagon agonist, resulted in a GCGR occupancy of 61.5 ± 9.1% in liver. Predicted human radiation dosimetry would allow for repeated annual [68Ga]Ga-DO3A-S01-GCG PET examinations. In summary, PET radioligand [68Ga]Ga-DO3A-S01-GCG is a quantitative biomarker of in vivo GCGR occupancy.
  •  
6.
  • Eriksson, Olof, et al. (författare)
  • Drug Occupancy Assessment at the Glucose-Dependent Insulinotropic Polypeptide Receptor by Positron Emission Tomography
  • 2021
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 70:4, s. 842-853
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting of the glucose-dependent insulinotropic polypeptide receptor (GIPR) is an emerging strategy in antidiabetic drug development. The aim of this study was to develop a positron emission tomography (PET) radioligand for the GIPR to enable the assessment of target distribution and drug target engagement in vivo. The GIPR-selective peptide S02-GIP was radiolabeled with Ga-68. The resulting PET tracer [Ga-68]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [Ga-68]S02-GIP-T4 as well as the occupancy of a drug candidate with GIPR activity were assessed in nonhuman primates (NHPs) by PET. [Ga-68]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo, pancreatic binding in NHPs could be dose-dependently inhibited by coinjection of unlabeled S02-GIP-T4. Finally, subcutaneous pretreatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [Ga-68]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [Ga-68]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [Ga-68]S02-GIP-T4 is a novel PET biomarker for safe, noninvasive, and quantitative assessment of GIPR target distribution and drug occupancy.
  •  
7.
  •  
8.
  • Eriksson, Olof, et al. (författare)
  • Glucagonlike Peptide-1 Receptor Imaging in Individuals with Type 2 Diabetes
  • 2022
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 63:5, s. 794-800
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucagonlike peptide-1 receptor (GLP1R) is a gut hormone receptor, intricately linked to regulation of blood glucose homeostasis via several mechanisms. It is an established and emergent drug target in metabolic disease. The PET radioligand 68Ga-DO3A-VS-exendin4 (68Ga-exendin4) has the potential to enable longitudinal studies of GLP1R in the human pancreas.Methods: 68Ga-exendin4 PET/CT examinations were performed on overweight-to-obese individuals with type 2 diabetes (n = 13) as part of a larger target engagement study (NCT03350191). A scanning protocol was developed to optimize reproducibility (target amount of 0.5 MBq/kg [corresponding to peptide amount of <0.2 µg/kg], blood sampling, and tracer stability assessment). The pancreas and abdominal organs were segmented, and binding was correlated with clinical parameters.Results: Uptake of 68Ga-exendin4 in the pancreas, but not in other abdominal tissues, was high but variable between individuals. There was no evidence of self-blocking of GLP1R by the tracer in this protocol, despite the high potency of exendin4. The results showed that a full dynamic scan can be simplified to a short static scan, potentially increasing throughput and reducing patient discomfort. The 68Ga-exendin4 concentration in the pancreas (i.e., GLP1R density) correlated inversely with the age of the individual and tended to correlate positively with body mass index. However, the total GLP1R content in the pancreas did not.Conclusion: In summary, we present an optimized and simplified 68Ga-exendin4 scanning protocol to enable reproducible imaging of GLP1R in the pancreas. 68Ga-exendin4 PET may enable quantification of longitudinal changes in pancreatic GLP1R during the development of type 2 diabetes, as well as target engagement studies of novel glucagonlike peptide-1 agonists.
  •  
9.
  • Eriksson, Olof, et al. (författare)
  • Imaging of the Glucagon Receptor in Subjects with Type 2 Diabetes
  • 2021
  • Ingår i: Journal of Nuclear Medicine. - : SOC NUCLEAR MEDICINE INC. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 62:6, s. 833-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the importance of the glucagon receptor (GCGR) in disease and in pharmaceutical drug development, there is a lack of specific and sensitive biomarkers of its activation in humans. The PET radioligand Ga-68-DO3A-VS-Tuna-2 (Ga-68-Tuna-2) was developed to yield a noninvasive imaging marker for GCGR target distribution and drug target engagement in humans. Methods: The biodistribution and dosimetry of Ga-68-Tuna-2 was assessed by PET/CT in 13 individuals with type 2 diabetes as part of a clinical study assessing the occupancy of the dual GCGR/glucagon like peptide-1 receptor agonist SAR425899. Binding of Ga-68-Tuna-2 in liver and reference tissues was evaluated and correlated to biometrics (e.g., weight or body mass index) or other biomarkers (e.g., plasma glucagon levels). Results: Ga-68-Tuna-2 binding was seen primarily in the liver, which is in line with the strong expression of GCGR on hepatocytes. The kidneys demonstrated high excretion-related retention, whereas all other tissue demonstrated rapid washout. The SUV55 (min) (SUV during the last 10-min time frame, 50-60 min after administration) uptake endpoint was sensitive to endogenous levels of glucagon. Ga-68-Tuna-2 exhibited a safe dosimetry profile and no adverse events after intravenous administration. Conclusion: Ga-68-Tuna-2 can be used for safe and accurate assessment of the GCGR in human. It may serve as an important tool in understanding the in vivo pharmacology of novel drugs engaging the GCGR.
  •  
10.
  • Eriksson, Olof, et al. (författare)
  • Radiotracers for Imaging of Fibrosis : Advances during the Last Two Decades and Future Directions
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 16:11
  • Forskningsöversikt (refereegranskat)abstract
    • Fibrosis accompanies various pathologies, and there is thus an unmet medical need for non-invasive, sensitive, and quantitative methods for the assessment of fibrotic processes. Currently, needle biopsy with subsequent histological analysis is routinely used for the diagnosis along with morphological imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). However, none of these imaging techniques are sufficiently sensitive and accurate to detect minor changes in fibrosis. More importantly, they do not provide information on fibrotic activity on the molecular level, which is critical for fundamental understanding of the underlying biology and disease course. Molecular imaging technology using positron emission tomography (PET) offers the possibility of imaging not only physiological real-time activity, but also high-sensitivity and accurate quantification. This diagnostic tool is well established in oncology and has exhibited exponential development during the last two decades. However, PET diagnostics has only recently been widely applied in the area of fibrosis. This review presents the progress of development of radiopharmaceuticals for non-invasive detection of fibrotic processes, including the fibrotic scar itself, the deposition of new fibrotic components (fibrogenesis), or the degradation of existing fibrosis (fibrolysis).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
tidskriftsartikel (46)
forskningsöversikt (5)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Velikyan, Irina, 196 ... (53)
Eriksson, Olof (23)
Lubberink, Mark (17)
Sundin, Anders, 1954 ... (12)
Antoni, Gunnar (9)
Sörensen, Jens (9)
visa fler...
Ilan, Ezgi (9)
Johansson, Lars (8)
Sandström, Mattias (8)
Wagner, Michael (8)
Bossart, Martin (8)
Pierrou, Stefan (8)
Haack, Torsten (7)
Laitinen, Iina (7)
Rosenström, Ulrika (6)
Feldwisch, Joachim (5)
Lindman, Henrik (5)
Fröss-Baron, Katarzy ... (5)
Tolmachev, Vladimir (4)
Alhuseinalkhudhur, A ... (4)
Tillner, Joachim (4)
Lindström, Elin (4)
Jahn, Ulrika (4)
Korsgren, Olle (3)
Johansson, L (3)
Wagner, M. (3)
Iyer, Victor (3)
Frejd, Fredrik Y. (3)
Andersson, Camilla (3)
Estrada, Sergio (3)
Berglund, Jan Erik (3)
Evers, Andreas (3)
Laitinen, I (3)
Puuvuori, Emmi (3)
Haack, T (3)
Bossart, M (3)
Plettenburg, O (3)
Pierrou, S (3)
Larsen, Philip J. (3)
Eriksson, Barbro (2)
Johansson, Silvia (2)
Rosestedt, Maria (2)
Sigfridsson, Jonatha ... (2)
Lorenz, Katrin (2)
Hulsart Billström, G ... (2)
Åberg, Ola, 1978- (2)
Plettenburg, Oliver (2)
Larsen, P. (2)
Ingvast, Sofie (2)
Trampal, Carlos (2)
visa färre...
Lärosäte
Uppsala universitet (53)
Karolinska Institutet (4)
Kungliga Tekniska Högskolan (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (53)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (48)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy