SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Venter J. Craig) "

Sökning: WFRF:(Venter J. Craig)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
3.
  • Dupont, Chris L., et al. (författare)
  • Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2, s. e89549-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.
  •  
4.
  • Allen, Lisa Zeigler, et al. (författare)
  • The Baltic Sea Virome : Diversity and Transcriptional Activity of DNA and RNA Viruses
  • 2017
  • Ingår i: mSystems. - 2379-5077. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Tornetrask in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Tornetrask. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more powerful uses of omics concerning ecosystem health. The use of omics-related data to assess ecosystem health holds great promise for rapid and relatively inexpensive determination of perturbations and risk, explicitly with regard to viral assemblages, as no single marker gene is suitable for widespread taxonomic coverage.
  •  
5.
  • Bosley, Katrine S, et al. (författare)
  • CRISPR germline engineering : the community speaks
  • 2015
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 33:5, s. 478-486
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Pang, Andy W., et al. (författare)
  • Towards a comprehensive structural variation map of an individual human genome
  • 2010
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-7596 .- 1465-6906. ; 11:5, s. R52-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (< 10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions. Results: We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association. Conclusions: Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy