SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verbrugghe M.) "

Sökning: WFRF:(Verbrugghe M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lind, C. M., et al. (författare)
  • Effectiveness and usability of real-time vibrotactile feedback training to reduce postural exposure in real manual sorting work
  • 2023
  • Ingår i: Ergonomics. - : Informa UK Limited. - 0014-0139 .- 1366-5847. ; 66:2, s. 198-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrotactile feedback training may be used as a complementary strategy to reduce time in demanding postures in manual handling. This study evaluated the short- and medium-term effects of concurrent posture-correction vibrotactile feedback training on trunk inclination exposure in real manual sorting work. Fifteen warehouse workers completed the training and the follow-up sessions. Trunk inclination angles were recorded using the ambulatory Smart Workwear System. Questionnaires were used for assessing system usability, perceived physical exertion, and work ability. The results showed reduced time in trunk inclination >30°, >45°, and >60°, and reductions in the 90th, 95th, and 99th percentile trunk inclination angles, when receiving feedback and immediately after feedback withdrawal. No significant reduction was retained after one and three weeks. The wearer's comfort was scored high, and the feedback did not increase the perceived cognitive demands. No significant effects attributed to changed trunk inclination exposure were observed for perceived physical exertion or work ability. The training program has the potential of contributing to reduced trunk inclination exposure in the short term. Future studies are needed to evaluate if improvements in the feedback training can transfer the short-term results to retained median- and long-term effects. Practitioner summary: A two-day training program with concurrent posture-correction vibrotactile feedback can contribute to reduced exposure of trunk inclination in real manual sorting work in the short term. More research is needed on how to design the feedback training programs in order to be effective in the long term. 
  •  
2.
  •  
3.
  •  
4.
  • Smoljkić, M., et al. (författare)
  • Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery
  • 2018
  • Ingår i: Medical Engineering and Physics. - : Elsevier. - 1350-4533 .- 1873-4030. ; 55, s. 16-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-specific biomechanical modelling can improve preoperative surgical planning. This requires patient-specific geometry as well as patient-specific material properties as input. The latter are, however, still quite challenging to estimate in vivo. This study focuses on the estimation of the mechanical properties of the arterial wall. Firstly, in vivo pressure, diameter and thickness of the arterial wall were acquired for sheep common carotid arteries. Next, the animals were sacrificed and the tissue was stored for mechanical testing. Planar biaxial tests were performed to obtain experimental stress-stretch curves. Finally, parameters for the hyperelastic Mooney–Rivlin and Gasser–Ogden–Holzapfel (GOH) material model were estimated based on the in vivo obtained pressure-diameter data as well as on the ex situ experimental stress-stretch curves. Both material models were able to capture the in vivo behaviour of the tissue. However, in the ex situ case only the GOH model provided satisfactory results. When comparing different fitting approaches, in vivo vs. ex situ, each of them showed its own advantages and disadvantages. The in vivo approach estimates the properties of the tissue in its physiological state while the ex situ approach allows to apply different loadings to properly capture the anisotropy of the tissue. Both of them could be further enhanced by improving the estimation of the stress-free state, i.e. by adding residual circumferential stresses in vivo and by accounting for the flattening effect of the tested samples ex vivo.
  •  
5.
  • Tarjuelo-Gutierrez, J., et al. (författare)
  • High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi
  • 2014
  • Ingår i: Medical and Biological Engineering and Computing. - : Springer Science and Business Media LLC. - 0140-0118 .- 1741-0444. ; 52:2, s. 159-168
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy