SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verhoelst T.) "

Sökning: WFRF:(Verhoelst T.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hubert, D., et al. (författare)
  • Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:6, s. 2497-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40km the satellite ozone measurement biases are smaller than ±5%, the short-term variabilities are less than 5-12% and the drifts are at most ±5%decade-1 (or even ±3%decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
  •  
2.
  • Paladini, C., et al. (författare)
  • The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium (ISM) via stellar yields. Nevertheless, many questions are still unsolved, one of which is the geometry of the mass-loss process. Aims. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. Methods. For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Results. Asymmetries are detected for the following five stars: R Leo, RT Vir, ?1Gruis, omi Ori, and R Crt. All the objects are O-rich or S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, i.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: More dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of the U Ant and S Sct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation.
  •  
3.
  • Paladini, C., et al. (författare)
  • To be or not to be asymmetric? VLTI and the mass loss geometry of red giants
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9780819491466 ; 8445, s. Art. no. 84451R-
  • Konferensbidrag (refereegranskat)abstract
    • The mass-loss process is a key ingredient for our understanding in many fields of astrophysics, including stellar evolution and the enrichment of the interstellar medium (ISM) via stellar yields. We combined the capability of the VLTI/MIDI and VLT/VISIR instruments with very recent Herschel/PACS observations to characterize the geometry of mass loss from evolved red giants on the Asymptotic Giant Branch (AGB) at various scales. This paper describes the sample of objects, the observing strategy, the tool for the interpretation, and preliminary MIDI results for two targets: U Ant and θ Aps.
  •  
4.
  • Paladini, C., et al. (författare)
  • VLTI/MIDI Large Program: AGB Stars at Different Spatial Scales
  • 2015
  • Ingår i: Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna, Austria, JUL 28-AUG 01, 2014. - 9781583818794 ; 497, s. 97-102
  • Konferensbidrag (refereegranskat)abstract
    • We have observed a sample of Asymptotic Giant Branch (AGB) stars from the Herschel Mass-loss of Evolved StarS (MESS) program with the VLTI MID infrared Interferometric instrument (MIDI). The program aims at providing insight to the atmospheres of those stars, to be able to understand the role of the mass-loss process at different spatial scales. We obtained visibilities and spectra of fourteen objects with different chemistries and variability classes. These observations, together with data we retrieved from the archive, allow us to characterize not only the geometry of the dust forming region, but in some cases also the time variability in the N band. As previously reported in the literature, we confirm the detection of spectroscopic but not interferometric variability. This result has implications on the size of the structures involved in the dust-formation process. We also report two cases of asymmetric structures; the nature of these structures will be clearly identified only with the second generation VLTI instrument MATISSE.
  •  
5.
  •  
6.
  • De Beck, Elvire, 1985, et al. (författare)
  • Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 523
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 \times 10^-8 M_ȯ yr^-1 up to 8 \times 10^-5 M_ȯ yr^-1. For red supergiants they reach values between 2 \times 10^-7 M_ȯ yr^-1 and 3 \times 10^-4 M_ȯ yr^-1. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the asympotic giant branch stars and their derived mass-loss rates, with a levelling off at ~3 \times 10^-5 M_ȯ yr^-1 for periods exceeding 850 days. Conclusions: Appendices are only available in electronic form at http://www.aanda.org
  •  
7.
  • Klotz, D., et al. (författare)
  • Catching the fish - Constraining stellar parameters for TX Piscium using spectro-interferometric observations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 550, s. A86-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. Aims. We analyse archive spectra obtained with the Short Wavelength Spectrometer (SWS) onboard ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TXPsc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. Methods. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the "classic" interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fitting a grid of state-of-the-art hydrostatic models to spectroscopic and interferometric observations. Results. We find good agreement between the parameters of the two methods. The effective temperature and luminosity clearly place TXPsc in the carbon-rich AGB star domain in the H-R-diagram. Current evolutionary tracks suggest that TXPsc became a C-star just recently, which means that the star is still in a "quiet" phase compared to the subsequent strong-wind regime. This agrees with the C/O ratio being only slightly greater than one.
  •  
8.
  • Lacour, S., et al. (författare)
  • The limb-darkened Arcturus : imaging with the IOTA/IONIC interferometer
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 485:2, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We undertook an H band interferometric examination of Arcturus, a star frequently used as a spatial and spectral calibrator. Methods. Using the IOTA 3 telescope interferometer, we performed spectro-interferometric observations (R approximate to 35) of Arcturus. Atmospheric models and prescriptions were fitted to the data to derive the brightness distribution of the photosphere. Image reconstruction was performed using two software algorithms: WISARD and MIRA. Results. An achromatic power law proved to be a good model of the brightness distribution, with a limb darkening compatible with the one derived from atmospheric model simulations using our mARCS model. A Rosseland diameter of 21.05 +/- 0.21 was derived, corresponding to an effective temperature of T-eff = 4295 +/- 26 K. No companion was detected from the closure phases, with an upper limit on the brightness ratio of 8 x 10(-4) at 1 AU. The dynamic range at such distance from the photosphere was established as 1.5 x 10(-4) (1 sigma rms). An upper limit of 1.7 x 10(-3) was also derived for the level of brightness asymmetries present in the photosphere.
  •  
9.
  • Sacuto, S., et al. (författare)
  • Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 525, s. A42-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We study the circumstellar environment of the carbon-rich star R Sculptoris using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI focal instruments VINCI and MIDI, respectively. Aims. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Methods. We first compare the spectro-interferometric measurements of the star at different epochs to detect the dynamic signatures of the circumstellar structures at different spatial and spectral scales. We then interpret these data using a self-consistent dynamic model atmosphere to discuss the dynamic picture deduced from the observations. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort is first applied to determining these parameters. Results. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 mu m. The model agrees well with the time-dependent flux data at 8.5 mu m, whereas it is too faint at 11.3 and 12.5 mu m. The VINCI visibility measurements are reproduced well, meaning that the extension of the model is suitable in the K-band. In the mid-infrared, the model has the proper extension to reveal molecular structures of C2H2 and HCN located above the stellar photosphere. However, the windless model used is not able to reproduce the more extended and dense dusty environment. Conclusions. Among the different explanations for the discrepancy between the model and the measurements, the strong nonequilibrium process of dust formation is one of the most probable. The transition from windless atmospheres to models with considerable mass-loss rates occurs in a very narrow range of stellar parameters, especially for the effective temperature, the C/O ratio, and the pulsation amplitude. A denser sampling of such critical regions of the parameter space with additional models might lead to a better representation of the extended structures of low mass-loss carbon stars like R Sculptoris. The complete dynamic coupling of gas and dust and the approximation of grain opacities with the small-particle limit in the dynamic calculation could also contribute to the difference between the model and the data.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy