SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vermeir Pieter) "

Sökning: WFRF:(Vermeir Pieter)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Pauw, Karen, et al. (författare)
  • Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges
  • 2021
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 109:7, s. 2629-2648
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest biodiversity world-wide is affected by climate change, habitat loss and fragmentation, and today 20% of the forest area is located within 100 m of a forest edge. Still, forest edges harbour a substantial amount of terrestrial biodiversity, especially in the understorey. The functional and phylogenetic diversity of forest edges have never been studied simultaneously at a continental scale, in spite of their importance for the forests' functioning and for communities' resilience to future change.We assessed nine metrics of taxonomic, phylogenetic and functional diversity of understorey plant communities in 225 plots spread along edge-to-interior gradients in deciduous forests across Europe. We then derived the relative effects and importance of edaphic, stand and landscape conditions on the diversity metrics.Here, we show that taxonomic, phylogenetic and functional diversity metrics respond differently to environmental conditions. We report an increase in functional diversity in plots with stronger microclimatic buffering, in spite of their lower taxonomic species richness. Additionally, we found increased taxonomic species richness at the forest edge, but in forests with intermediate and high openness, these communities had decreased phylogenetic diversity.Functional and phylogenetic diversity revealed complementary and important insights in community assembly mechanisms. Several environmental filters were identified as potential drivers of the patterns, such as a colder macroclimate and less buffered microclimate for functional diversity. For phylogenetic diversity, edaphic conditions were more important. Interestingly, plots with lower soil pH had decreased taxonomic species richness, but led to increased phylogenetic diversity, challenging the phylogenetic niche conservatism concept.Synthesis. Taxonomic, phylogenetic and functional diversity of understorey communities in forest edges respond differently to environmental conditions, providing insight into different community assembly mechanisms and their interactions. Therefore, it is important to look beyond species richness with phylogenetic and functional diversity approaches when focusing on forest understorey biodiversity.
  •  
2.
  • Sanczuk, Pieter, et al. (författare)
  • Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 30:1, s. 205-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Variation in plant defence traits has been frequently assessed along large-scale macroclimatic clines. In contrast, local-scale changes in the environment have recently been proposed to also modulate plant defence traits. Yet, the relative importance of drivers at both scales has never been tested. We aimed to quantify the relative importance of environmental drivers inherent to large and small spatial scales on the physical and chemical defence and tolerance to herbivory in understorey plant species of deciduous forests of Europe.Location: Deciduous forests in Europe.Time period: Present.Major taxa studied: Forest understorey plants.Methods: We sampled four typical ancient forest herbs (Anemone nemorosa, Oxalis acetosella, Deschampsia cespitosa, Milium effusum) along small and large spatial scale gradients (those driven by latitude, elevation, forest management and distance to the forest edge), and analysed a suite of nine constitutively expressed traits associated with overall resistance to herbivory, and their multivariate response to environmental clines.Results: Although our study included a large gradient in macroclimate, we found variation in the local environment at small spatial scales (i.e. soil nutrient concentration and forest structural complexity) to be more important in predicting plant resistance to herbivory.Main conclusions: In addition to macroclimatic conditions, subtle differences in forest microclimate and soil characteristics also played a major role in modulating plant defence phenotypes. These findings highlight the importance of the local habitat structure and environmental conditions in modulating plant resistance to herbivory.
  •  
3.
  • Govaert, Sanne, et al. (författare)
  • Edge influence on understorey plant communities depends on forest management
  • 2020
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 31:2, s. 281-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Does the influence of forest edges on plant species richness and composition depend on forest management? Do forest specialists and generalists show contrasting patterns?Location: Mesic, deciduous forests across Europe.Methods: Vegetation surveys were performed in forests with three management types (unthinned, thinned 5-10 years ago and recently thinned) along a macroclimatic gradient from Italy to Norway. In each of 45 forests, we established five vegetation plots along a south-facing edge-to-interior gradient (n = 225). Forest specialist, generalist and total species richness, as well as evenness and proportion of specialists, were tested as a function of the management type and distance to the edge while accounting for several environmental variables (e.g. landscape composition and soil characteristics). Magnitude and distance of edge influence were estimated for species richness per management type.Results: Greatest total species richness was found in thinned forests. Edge influence on generalist plant species richness was contingent on the management type, with the smallest decrease in species richness from the edge-to-interior in unthinned forests. In addition, generalist richness increased with the proportion of forests in the surrounding landscape and decreased in forests dominated by tree species that cast more shade. Forest specialist species richness, however, was not affected by management type or distance to the edge, and only increased with pH and increasing proportion of forests in the landscape.Conclusions: Forest thinning affects the plant community composition along edge-to-interior transects of European forests, with richness of forest specialists and generalists responding differently. Therefore, future studies should take the forest management into account when interpreting edge-to-interior because both modify the microclimate, soil processes and deposition of polluting aerosols. This interaction is key to predict the effects of global change on forest plants in landscapes characterized by the mosaic of forest patches and agricultural land that is typical for Europe.
  •  
4.
  • Meeussen, Camille, et al. (författare)
  • Drivers of carbon stocks in forest edges across Europe
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 759
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lieswithin 100 m of an edge and, even in temperate forests, knowledge on howedge conditions affect carbon stocks and howfar this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edgewas mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral top soil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy