SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Versteegh Marijn A. M.) "

Sökning: WFRF:(Versteegh Marijn A. M.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brodu, Annalisa, et al. (författare)
  • Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots
  • 2018
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 5:8, s. 3353-3362
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocrystalline InP quantum dots (QDs) hold promise for heavy-metal-free optoelectronic applications due to their bright and size tunable emission in the visible range. Photochemical stability and high photoluminescence (PL) quantum yield are obtained by a diversity of epitaxial shells around the InP core. To understand and optimize the emission line shapes, the exciton fine structure of InP core/shell QD systems needs be investigated. Here, we study the exciton fine structure of InP/ZnSe core/shell QDs with core diameters ranging from 2.9 to 3.6 nm (PL peak from 2.3 to 1.95 eV at 4 K). PL decay measurements as a function of temperature in the 10 mK to 300 K range show that the lowest exciton fine structure state is a dark state, from which radiative recombination is assisted by coupling to confined acoustic phonons with energies ranging from 4 to 7 meV, depending on the core diameter. Circularly polarized fluorescence line-narrowing (FLN) spectroscopy at 4 K under high magnetic fields (up to 30 T) demonstrates that radiative recombination from the dark F = +/- 2 state involves acoustic and optical phonons, from both the InP core and the ZnSe shell. Our data indicate that the highest intensity FLN peak is an acoustic phonon replica rather than a zero-phonon line, implying that the energy separation observed between the F = +/- 1 state and the highest intensity peak in the FLN spectra (6 to 16 meV, depending on the InP core size) is larger than the splitting between the dark and bright fine structure exciton states.
  •  
3.
  • Wengerowsky, Soeren, et al. (författare)
  • Entanglement distribution over a 96-km-long submarine optical fiber
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 116:14, s. 6684-6688
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.
  •  
4.
  • Wengerowsky, Soeren, et al. (författare)
  • Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre
  • 2020
  • Ingår i: NPJ QUANTUM INFORMATION. - : NATURE PUBLISHING GROUP. - 2056-6387. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum key distribution (QKD) based on entangled photon pairs holds the potential for repeater-based quantum networks connecting clients over long distance. We demonstrate long-distance entanglement distribution by means of polarisation-entangled photon pairs through two successive deployed 96 km-long telecommunications fibres in the same submarine cable. One photon of each pair was detected directly after the source, while the other travelled the fibre cable in both directions for a total distance of 192 km and attenuation of 48 dB. The observed two-photon Bell state exhibited a fidelity 85 +/- 2% and was stable over several hours. We employed neither active stabilisation of the quantum state nor chromatic dispersion compensation for the fibre.
  •  
5.
  • Giustina, Marissa, et al. (författare)
  • A Significant-Loophole-Free Test of Bells Theorem with Entangled Photons
  • 2017
  • Ingår i: QUANTUM INFORMATION SCIENCE AND TECHNOLOGY III. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510613492 - 9781510613485
  • Konferensbidrag (refereegranskat)abstract
    • John Bells theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). 1 (3), 195). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bells inequalities. Employing modifications of Bells inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74 . 10(-31), corresponding to an 11.5 standard deviation effect.
  •  
6.
  • Giustina, Marissa, et al. (författare)
  • Significant-Loophole-Free Test of Bells Theorem with Entangled Photons
  • 2015
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 115:25, s. 250401-
  • Tidskriftsartikel (refereegranskat)abstract
    • Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bells theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bells inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74 x 10(-31), corresponding to an 11.5 standard deviation effect.
  •  
7.
  • Gyger, Samuel, 1991- (författare)
  • Integrated Photonics for Quantum Optics
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Quantum physics allows us a vision of Nature's forces that bind the world, all its seeds and sources. After decades of primarily scientific research, we've arrived at a stage in time where quantum technology can be applied to practical problems and add value outside the field. Four pillars of quantum technologies are commonly identified: quantum computing, quantum simulation, quantum communication, and quantum sensing. For example, quantum computers will allow us to model quantum systems beyond our current capabilities, and quantum communication allows us to protect information unconditionally based on physics. Quantum sensing will enable us to measure our reality beyond classical limits.Within all of these areas, optical photons play a unique role. In quantum computer implementations (e.g. photonic, trapped ion, or superconducting) photons can serve as a computational resource, for system read-out, or for linking distant hardware nodes. Quantum communication can only be realized via photons, utilizing the low-loss propagation of photons in optical fibers, on photonic devices as well as in free space. In quantum sensing and metrology, squeezed light can be used to go beyond the current limits of sensing methods. Therefore, the quantum technology field crucially relies on precise and efficient methods to generate, steer, manipulate and detect photons.This dissertation discusses work in integrated photonic circuits, self-assembled semiconductor quantum dot devices, and superconducting nanowire single--photon detectors.We integrate multiple materials on a silicon nitride platform, including Cu2O as a platform for solid-state Rydberg physics, WS2 to improve non-linear light-generation within Si3N4, and hBN as an excellent single-photon emitter.We demonstrate optically active quantum dots as single-photon emitters in the telecom C-band and their compatibility with commercial telecom equipment.We strain-control the fine-structure splitting of these devices, which is required for future quantum interference-based protocols.Finally, we study superconducting nanowire single-photon detectors (SNSPD) and combine them with photonic micro-electromechanical systems (MEMS), establishing a cryo-compatible, reconfigurable photonic platform.
  •  
8.
  • Jöns, Klaus D., et al. (författare)
  • Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect similar to 200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S-CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 +/- 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
  •  
9.
  • Orieux, Adeline, et al. (författare)
  • Semiconductor devices for entangled photon pair generation : a review
  • 2017
  • Ingår i: Reports on progress in physics (Print). - : IOP PUBLISHING LTD. - 0034-4885 .- 1361-6633. ; 80:7
  • Forskningsöversikt (refereegranskat)abstract
    • Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
  •  
10.
  • Steinhauer, Stephan, et al. (författare)
  • Rydberg excitons in Cu2O microcrystals grown on a silicon platform
  • 2020
  • Ingår i: Communications Materials. - : Springer Nature. - 2662-4443. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cuprous oxide (Cu2O) is a semiconductor with large exciton binding energy and significant technological importance in applications such as photovoltaics and solar water splitting. It is also a superior material system for quantum optics that enabled the observation of intriguing phenomena, such as Rydberg excitons as solid-state analogue to highly-excited atomic states. Previous experiments related to excitonic properties focused on natural bulk crystals due to major difficulties in growing high-quality synthetic samples. Here, the growth of Cu2O microcrystals with excellent optical material quality and very low point defect levels is presented. A scalable thermal oxidation process is used that is ideally suited for integration on silicon, demonstrated by on-chip waveguide-coupled Cu2O microcrystals. Moreover, Rydberg excitons in site-controlled Cu2O microstructures are shown, relevant for applications in quantum photonics. This work paves the way for the wide-spread use of Cu2O in optoelectronics and for the development of novel device technologies. Cu2O is of great interest for its excitonic properties, yet challenges in its fabrication means that most experiments focus on naturally occurring samples. Here, scalable thermal oxidation is reported for the growth of Cu2O with low-defect content, allowing the observation of Rydberg excitons.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Versteegh, Marijn A. ... (12)
Zwiller, Val (8)
Zeilinger, Anton (4)
Steinhauer, Stephan (4)
Schweickert, Lucas (4)
Wengerowsky, Soeren (4)
visa fler...
Steinlechner, Fabian (4)
Jöns, Klaus D. (3)
Larsson, Jan-Åke (2)
Gyger, Samuel (2)
Zichi, Julien (2)
Los, Johannes W. N. (2)
Elshaari, Ali W. (2)
Mysyrowicz, Andre (2)
Inguscio, Massimo (2)
Lettner, Thomas (2)
Giustina, Marissa (2)
Handsteiner, Johanne ... (2)
Hochrainer, Armin (2)
Phelan, Kevin (2)
Kofler, Johannes (2)
Abellan, Carlos (2)
Amaya, Waldimar (2)
Mitchell, Morgan W. (2)
Beyer, Joern (2)
Gerrits, Thomas (2)
Lita, Adriana E. (2)
Liu, Bo (1)
Bals, Sara (1)
Brodu, Annalisa (1)
Ballottin, Mariana V ... (1)
Buhot, Jonathan (1)
van Harten, Elleke J ... (1)
Dupont, Dorian (1)
La Porta, Andrea (1)
Prins, P. Tim (1)
Tessier, Mickael D. (1)
Hens, Zeger (1)
Rabouw, Freddy T. (1)
Christianen, Peter C ... (1)
Donega, Celso de Mel ... (1)
Vanmaekelbergh, Dani ... (1)
Reimer, Michael E. (1)
Poole, Philip J. (1)
Dalacu, Dan (1)
Giazotto, Francesco (1)
Yang, Lily (1)
Dalacu, D. (1)
Poole, P. J. (1)
Reimer, M. E. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (10)
Linköpings universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy