SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vervoort Michel) "

Sökning: WFRF:(Vervoort Michel)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Janssen, Ralf, et al. (författare)
  • Conservation, loss, and redeployment of Wnt ligands in protostomes : implications for understanding the evolution of segment formation
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10, s. 374-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated expression of these genes in the beetle Tribolium castaneum. Results: We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated patterns and in the segment addition zone, and while these patterns can be relatively conserved among arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in annelids and arthropods respectively. Conclusions: Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches, most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues.
  •  
4.
  • Richards, Stephen, et al. (författare)
  • The genome of the model beetle and pest Tribolium castaneum.
  • 2008
  • Ingår i: Nature. - 1476-4687. ; 452:7190, s. 949-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Tribolium castaneum is a representative of earth’s most numerous eukaryotic order, a powerful model organism for the study of generalized insect development, and also an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved an ability to interact with a diverse chemical environment as evidenced by large expansions in odorant and gustatory receptors, as well as p450 and other detoxification enzymes. Developmental patterns in Tribolium are more representative of other arthropods than those found in Drosophila, a fact represented in gene content and function. For one, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, and some are expressed in the growth zone crucial for axial elongation in short germ development. Systemic RNAi in T. castaneum appears to use mechanisms distinct from those found in C. elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
  •  
5.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
6.
  • 2021
  • swepub:Mat__t
  •  
7.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
8.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy