SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vestin P.) "

Sökning: WFRF:(Vestin P.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
2.
  • Helbig, M., et al. (författare)
  • Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
  • 2022
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-6798 .- 1758-678X. ; 12:8, s. 743-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
  •  
3.
  • Rinne, J., et al. (författare)
  • Effect of the 2018 European drought on methane and carbon dioxide exchange of northern mire ecosystems
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • We analysed the effect of the 2018 European drought on greenhouse gas (GHG) exchange of five North European mire ecosystems. The low precipitation and high summer temperatures in Fennoscandia led to a lowered water table in the majority of these mires. This lowered both carbon dioxide (CO2) uptake and methane (CH4) emission during 2018, turning three out of the five mires from CO(2)sinks to sources. The calculated radiative forcing showed that the drought-induced changes in GHG fluxes first resulted in a cooling effect lasting 15-50 years, due to the lowered CH(4)emission, which was followed by warming due to the lower CO(2)uptake. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
4.
  • Lindroth, Anders, et al. (författare)
  • Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B-Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m(-2)yr(-1)during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m(-2)yr(-1)with a median value of -59 g C m(-2)yr(-1). This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
5.
  • Mircea, M, et al. (författare)
  • Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin
  • 2005
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 5, s. 3111-3126
  • Tidskriftsartikel (refereegranskat)abstract
    • The aerosol in the Amazon basin is dominated throughout the year by organic matter, for the most part soluble in water. In this modeling study, we show how the knowledge of water-soluble organic compounds (WSOC) and the associated physical and chemical properties (e.g. solubility, surface tension, dissociation into ions) affect the hygroscopic growth and activation of the aerosol in this area. The study is based on data obtained during the SMOCC field experiment carried out in Rondonia, Brazil, over a period encompassing the dry (biomass burning) season to the onset of the wet season (September to mid-November, 2002). The comparison of predicted and measured cloud condensation nuclei (CCN) number concentration shows that the knowledge of aerosol WSOC composition in terms of classes of compounds and of their relative molecular weights and acidic properties may be sufficient to predict aerosol activation, without any information on solubility. Conversely, the lack of knowledge on WSOC solubility leads to a high overestimation of the observed diameter growth factors (DGF) by the theory. Moreover, the aerosol water soluble inorganic species fail to predict both DGFs and CCN number concentration. In fact, this study shows that a good reproduction of the measured DGF and CCN concentration is obtained if the chemical composition of aerosol, especially that of WSOC, is appropriately taken into account in the calculations. New parameterizations for the computed CCN spectra are also derived which take into account the variability caused by chemical effects (surface tension, molecular composition, solubility, degree of dissociation of WSOC).
  •  
6.
  • Pavelka, M., et al. (författare)
  • Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32:4, s. 569-587
  • Tidskriftsartikel (refereegranskat)abstract
    • Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
  •  
7.
  • Rissler, Jenny, et al. (författare)
  • Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia
  • 2006
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 6:2, s. 471-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia). The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate), and cover the later part of the dry season (with heavy biomass burning), a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850 nm) and an APS (Aerodynamic Particle Sizer), extending the distributions up to 3.3 mu m in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer) measured the hygroscopic diameter growth factors (Gf) at 90% relative humidity (RH), for particles with dry diameters (d(p)) between 20-440 nm, and at several occasions RH scans (30-90% RH) were performed for 165 nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD) of similar to 12 nm, an Aitken mode (GMD=61-92 nm) and an accumulation mode (GMD=128-190 nm). The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf similar to 1.09 for 100 nm particles) and moderately hygroscopic (Gf similar to 1.26). While the hygroscopic growth factors were surprisingly similar over the periods, the number fraction of particles belonging to each hygroscopic group varied more, with the dry period aerosol being more dominated by nearly hydrophobic particles. As a result the total particle water uptake rose going into the cleaner period. The fraction of moderately hygroscopic particles was consistently larger for particles in the accumulation mode compared to the Aitken mode for all periods. Scanning the H-TDMA over RH (30-90% RH) showed no deliquescence behavior. A parameterization of both Gf(RH) and Gf(d(p)), is given.
  •  
8.
  • Vestin, A, et al. (författare)
  • Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling
  • 2007
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 112:D14
  • Tidskriftsartikel (refereegranskat)abstract
    • The cloud-nucleating properties of the atmospheric aerosol were studied in an area under strong influence of vegetation burning. The measurements were part of Large-Scale Biosphere Atmosphere Experiment in Amazonia-Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) and were carried out at a ground site located in the state of Rondonia in southwestern Amazonia, Brazil, September to November 2002, covering the dry season, a transition period, and the onset of the wet season. The concentrations of cloud condensation nuclei (CCN) were measured with a static thermal gradient CCN counter for supersaturations ranging between 0.23 and 1.12%. As a closure test, the CCN concentrations were predicted with a time resolution of 10 min from measurements of the dry particle number size distribution (3-850 nm, Differential Mobility Analyzer (DMPS)) and hygroscopic growth at 90% relative humidity (Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA)). No chemical information was needed. The predicted and measured CCN concentrations were highly correlated (r(2)=0.97-0.99), and the predictions were only slightly lower than those measured, typically by 15-20%. Parameterizations of the predicted CCN concentrations are given for each of the three meteorological periods. These are based on averages taken during the afternoon hours when the measurements at ground level were representative for the aerosol entering the base of convective clouds. Furthermore, a more detailed parameterization including the mixing state of the aerosol is given, where the hygroscopic properties are expressed as the number of soluble ions or nondissociating molecules per unit volume dry particle.
  •  
9.
  •  
10.
  • Vestin, Jenny, et al. (författare)
  • The influence of alkaline and non-alkaline parent material on soil chemistry
  • 2006
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 135, s. 97-106
  • Tidskriftsartikel (refereegranskat)abstract
    • The gneiss bedrock at Alnö Island, (62o24N, 17o30E) in the middle of Sweden, has alkaline intrusions interspersed in narrow dikes. This gives an opportunity to study the impact of different parent material on soil solution in a homogeneous spruce stand. In this study, the alkaline parent materials gave rise to a soil solution with significantly (p 0.05) higher concentrations of DOC, SO4, NO3, Ca and Mg compared to the non-alkaline sites. For the deepest mineral horizons, 25-30cm, F and pH were also higher in the alkaline soil solutions. There were almost no differences between the organic horizons at alkaline and non-alkaline sites, probably explained by the influence of litter and recirculation of nutrients. The multivariate analyses emphasized the correlation between the parent material and the soil solution concentrations of Ca, Mg, PO4 and Al. The data were statistically evaluated by t-tests, ANOVA (Analysis of variances), PCA (Principal Component Analysis) and PLS (Partial Least Squares regression).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy