SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vierling Elizabeth) "

Sökning: WFRF:(Vierling Elizabeth)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carra, Serena, et al. (författare)
  • The growing world of small heat shock proteins : from structure to functions
  • 2017
  • Ingår i: Cell Stress and Chaperones. - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 22:4, s. 601-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world’s experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12–15, 2016).
  •  
2.
  • Hochberg, Georg K A, et al. (författare)
  • Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions.
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 359:6378, s. 930-935
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
  •  
3.
  • Marklund, Erik G., Teknologie doktor, 1979-, et al. (författare)
  • Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis
  • 2018
  • Ingår i: Cell stress & chaperones (Print). - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 23:4, s. 723-732
  • Tidskriftsartikel (refereegranskat)abstract
    • The canonical function of small heat-shock proteins (sHSPs) is to interact with proteins destabilized under conditions of cellular stress. While the breadth of interactions made by many sHSPs is well-known, there is currently little knowledge about what structural features of the interactors form the basis for their recognition. Here, we have identified 83 in vivo interactors of the sole sHSP in the cyanobacterium Synechocystis sp. PCC 6803, HSP16.6, reflective of stable associations with soluble proteins made under heat-shock conditions. By performing bioinformatic analyses on these interactors, we identify primary and secondary structural elements that are enriched relative to expectations from the cyanobacterial genome. In addition, by examining the Synechocystis interactors and comparing them with those identified to bind sHSPs in other prokaryotes, we show that sHSPs associate with specific proteins and biological processes. Our data are therefore consistent with a picture of sHSPs being broadly specific molecular chaperones that act to protect multiple cellular pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy