SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vigil Stenman Theoden) "

Sökning: WFRF:(Vigil Stenman Theoden)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Persson, Tomas, et al. (författare)
  • Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of Datisca glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in Datisca glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both alpha- and beta-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors.
  •  
3.
  • Ran, Liang, et al. (författare)
  • Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.Methodology/Principal Findings: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (,600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.Conclusions/Significance: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.
  •  
4.
  • Vigil Stenman, Carl Theoden, 1972- (författare)
  • Effects and Dynamics of Insertion Sequences in the Evolution of Cyanobacteria
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cyanobacteria are globally widespread and ecologically highly significant photoautotrophic microorganisms, with diverse geno- and phenotypic characters unprecedented among prokaryotes. This phylum embraces representatives with an exclusive adaptability in highly specialized environments, from oligotrophic ocean waters to the interior of cells in symbiotic plants, the most extreme being the chloroplasts. Insertion sequences (ISs) are short (~1000 bp) mobile genetic elements prevalent in microbial genomes, potentially representing potent adaptive forces.In this thesis, hypotheses tested that ISs play significant roles in both reductive and adaptive evolution in physiologically versatile cyanobacteria, using two model systems. First, the genome of an obligate plant (Azolla) symbiont, the cyanobacterium ‘Nostoc azollae 0708’, was sequenced, which led to the discovery of a highly ‘eroding’ genome (5,48 Mbp), loaded with ISs covering 14% of the genome, a situation likely caused by the relaxed selection pressure within the plant. The ISs were located in close proximity to the extremely numerous pseudogenes identified, although genes with key functions in a symbiotic context escaped IS mediated erosion (e.g. nitrogen fixation and differentiation genes). Some ISs were shown to have transposed short distances within the genome (‘local hoping’), and to be likely causative agents in pseudogene formation, and thus pivotal actors in the reductive evolution discovered.To widen the scope of ISs further, additionally 66 phylogenetically diverse microorganisms with a variety of life styles (free-living, symbionts, pathogens) were examined in regards to ISs influence. The data verified their over-all importance in shaping microbial genomes.Finally, natural microbial populations in the Baltic Sea, a semi-enclosed geologically young (~10,000 years) brackish water body offering steep gradients in salinity and nutrient loads, were examined using metatranscriptomics and metagenomics. A large proportion of the metagenome was devoted to ISs and most importantly a large fraction of the metatranscriptome consisted of IS transcripts (~1%), which may be suggestive of a high IS activity. These phenomena were most apparent in cyanobacteria in central parts of the Baltic Sea. The presence of an especially rich abundance of ISs in brackish waters was further substantiated by their low frequency (< 0.1%) in microbes of marine waters. Hence, ISs may facilitate both adaptations (short term) and adaptive evolution (long term) in microbes entering brackish water, otherwise unable to cross the distinct limnic-to-marine salinity-divide. Together, the data reveal high genomic loads of ISs in cyanobacteria subject to highly demanding conditions and stress the importance of locally migrating ISs (and pseudogenization) as important facilitators in adaptation and evolution, being a more rapid process than hitherto expected. The findings strongly support current theories stating a crucial role of ISs in shaping microbial genomes to render fitness.
  •  
5.
  • Vigil-Stenman, Theoden, et al. (författare)
  • High abundance and expression of transposases in bacteria from the Baltic Sea
  • 2017
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 11:11, s. 2611-2623
  • Tidskriftsartikel (refereegranskat)abstract
    • Transposases are mobile genetic elements suggested to have an important role in bacterial genome plasticity and host adaptation but their transcriptional activity in natural bacterial communities is largely unexplored. Here we analyzed metagenomes and -transcriptomes of size fractionated (0.1-0.8, 0.8-3.0 and 3.0-200 mu m) bacterial communities from the brackish Baltic Sea, and adjacent marine waters. The Baltic Sea transposase levels, up to 1.7% of bacterial genes and 2% of bacterial transcripts, were considerably higher than in marine waters and similar to levels reported for extreme environments. Large variations in expression were found between transposase families and groups of bacteria, with a two-fold higher transcription in Cyanobacteria than in any other phylum. The community-level results were corroborated at the genus level by Synechococcus transposases reaching up to 5.2% of genes and 6.9% of transcripts, which is in contrast to marine Synechococcus that largely lack these genes. Levels peaked in Synechococcus from the largest size fraction, suggesting high frequencies of lateral gene transfer and high genome plasticity in colony-forming picocyanobacteria. Together, the results support an elevated rate of transposition-based genome change and adaptation in bacterial populations of the Baltic Sea, and possibly also of other highly dynamic estuarine waters.
  •  
6.
  • Vigil-Stenman, Theoden, et al. (författare)
  • High transcriptional activity of insertion sequences in Baltic Sea microorganisms
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Insertion sequences (ISs) are mobile genetic elements found in almost all prokaryotic genomes. They consist of a gene encoding a transposase, surrounded by inverted repeats. The transposase has the ability to excise the IS and insert it elsewhere in the genome, a process referred to as transposition. ISs have high copy numbers in prokaryotes inhabiting “extreme” environments, and it is proposed that their activity facilitates adaptation to environmental changes and subsequent adaptive evolution. The initial step in the transposition of an IS is the transcription of the open reading frame encoding the transposase. In an effort to evaluate the presence, activity and role of ISs in microbes of a temperate water body offering steep changes in salinity and nutrient conditions, the metatranscriptomes and metagenomes of ten water samples from the brackish water Baltic Sea were examined. ISs in the limnic Lake Torne Träsk, the marine waters off the Swedish west coast and off the coast of California were included to get perspective. The results reveal that insertion sequences make up a considerably higher fraction of the metatranscriptomes of brackish waters (0.3-1.8%) than of marine waters (0.0005-0.2%), and that the IS fraction of the metatranscriptome is commonly double that of the IS fraction of the metagenome. From these data it is concluded that ISs occupy a significant part of Baltic Sea bacterial transcription activity, in line with their proposed function as facilitators of adaptive change to changing and stressful environments.
  •  
7.
  • Vigil-Stenman, Theoden, et al. (författare)
  • Local hopping mobile DNA implicated in pseudogene formation and reductive evolution in an obligate cyanobacteria-plant symbiosis
  • 2015
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Insertion sequences (ISs) are approximately 1 kbp long jumping genes found in prokaryotes. ISs encode the protein Transposase, which facilitates the excision and reinsertion of ISs in genomes, making these sequences a type of class I (cut-and-paste) Mobile Genetic Elements. ISs are proposed to be involved in the reductive evolution of symbiotic prokaryotes. Our previous sequencing of the genome of the cyanobacterium 'Nostoc azollae' 0708, living in a tight perpetual symbiotic association with a plant (the water fern Azolla), revealed the presence of an eroding genome, with a high number of insertion sequences (ISs) together with an unprecedented large proportion of pseudogenes. To investigate the role of ISs in the reductive evolution of 'Nostoc azollae' 0708, and potentially in the formation of pseudogenes, a bioinformatic investigation of the IS identities and positions in 47 cyanobacterial genomes was conducted. To widen the scope, the IS contents were analysed qualitatively and quantitatively in 20 other genomes representing both free-living and symbiotic bacteria. Results: Insertion Sequences were not randomly distributed in the bacterial genomes and were found to transpose short distances from their original location (local hopping) and pseudogenes were enriched in the vicinity of IS elements. In general, symbiotic organisms showed higher densities of IS elements and pseudogenes than non-symbiotic bacteria. A total of 1108 distinct repeated sequences over 500 bp were identified in the 67 genomes investigated. In the genome of 'Nostoc azollae' 0708, IS elements were apparent at 970 locations (14.3%), with 428 being full-length. Morphologically complex cyanobacteria with large genomes showed higher frequencies of IS elements, irrespective of life style. Conclusions: The apparent co-location of IS elements and pseudogenes found in prokaryotic genomes implies earlier IS transpositions into genes. As transpositions tend to be local rather than genome wide this likely explains the proximity between IS elements and pseudogenes. These findings suggest that ISs facilitate the reductive evolution in for instance in the symbiotic cyanobacterium 'Nostoc azollae' 0708 and in other obligate prokaryotic symbionts.
  •  
8.
  • Wibberg, Daniel, et al. (författare)
  • Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster : They Come in Teams
  • 2019
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 11:8, s. 2273-2291
  • Tidskriftsartikel (refereegranskat)abstract
    • Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched metagenomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures. The results show that cluster-2 inocula represent groups of strains, and that strains not represented in symbiotic structures, that is, unable to performsymbiotic nitrogen fixation, may still be able to colonize nodules. Transposase gene abundance was compared in the different Frankia-enriched metagenomes with the result that NorthAmerican strains contain more transposase genes than Eurasian strains. An analysis of the evolution and distribution of the host plants indicated that bursts of transposition may have coincided with niche competition with other cluster-2 Frankia strains. The first genome of an inoculum from the Southern Hemisphere, obtained from nodules of Coriaria papuana in Papua NewGuinea, represents a novel species, postulated as Candidatus Frankiameridionalis. All Frankia-enrichedmetagenomes obtained in this study contained homologs of the canonical nod genes nodABC; the North American genomes also contained the sulfotransferase gene nodH, while the genome from the Southern Hemisphere only contained nodC and a truncated copy of nodB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy