SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vigolo Brigitte) "

Sökning: WFRF:(Vigolo Brigitte)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albaqami, Munirah D., et al. (författare)
  • The fast nucleation/growth of Co3O4 nanowires on cotton silk : the facile development of a potentiometric uric acid biosensor
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:29, s. 18321-18332
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 +/- 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec(-1). Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
  •  
2.
  • Allali, Naoual, et al. (författare)
  • Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules
  • 2018
  • Ingår i: Beilstein Journal of Nanotechnology. - : Beilstein-Institut. - 2190-4286. ; 9, s. 2750-2762
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-walled carbon nanotubes (SWCNTs) were functionalized by ferrocene through ethyleneglycol chains of different lengths (FcETGn) and the functionalized SWCNTs (f-SWCNTs) were characterized by different complementary analytical techniques. In particular, high-resolution scanning electron transmission microscopy (HRSTEM) and electron energy loss spectroscopy (EELS) analyses support that the outer tubes of the carbon-nanotube bundles were covalently grafted with FcETGn groups. This result confirms that the electrocatalytic effect observed during the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) co-factor by the f-SWCNTs is due to the presence of grafted ferrocene derivatives playing the role of a mediator. This work clearly proves that residual impurities present in our SWCNT sample (below 5 wt. %) play no role in the electrocatalytic oxidation of NADH. Moreover, molecular dynamic simulations confirm the essential role of the PEG linker in the efficiency of the bioelectrochemical device in water, due to the favorable interaction between the ETG units and water molecules that prevents π-stacking of the ferrocene unit on the surface of the CNTs. This system can be applied to biosensing, as exemplified for glucose detection. The well-controlled and well-characterized functionalization of essentially clean SWCNTs enabled us to establish the maximum level of impurity content, below which the f-SWCNT intrinsic electrochemical activity is not jeopardized.
  •  
3.
  • Allali, Naoual, et al. (författare)
  • Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices
  • 2012
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley. - 0370-1972 .- 1521-3951. ; 249:12, s. 2349-2352
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work reports the covalent functionalization of few-wall CNTs (FWCNTs) by ferrocene derivatives to (i) improve their dispersion efficiency in water and (ii) graft electroactive chemical groups on their side-walls in order to promote electron transfer to biomolecules. The functionalized CNTs (f-CNTs) are used to modify a glassy carbon electrode and this modified electrode is used for oxidizing the cofactor NADH (dihydronicotinamide adenine dinucleotide).
  •  
4.
  • Allali, Naoual, et al. (författare)
  • Electrocatalytic effect towards NADH induced by HiPco single-walled carbon nanotubes covalently functionalized by ferrocene derivatives
  • 2013
  • Ingår i: 2012 MRS Fall Meeting. - : Cambridge University Press.
  • Konferensbidrag (refereegranskat)abstract
    • The present work reports the covalent functionalization of single-walled carbon nanotubes (SWCNTs) by ferrocene derivatives with polyethyleneglycol linkers. A very clean initial sample was chosen to avoid any residual catalyst and carbon impurities. Functionalized SWCNTs (f-CNTs) are deposited on the surface of a glassy carbon electrode (GCE) and this modified electrode is used for oxidizing the cofactor NADH (dihydronicotinamide adenine dinucleotide) in the presence of diaphorase. A clear electrocatalytic effect is evidenced, which can only be attributed to the f-CNTs.
  •  
5.
  • Allali, Naoual, et al. (författare)
  • Few-wall carbon nanotubes covalently functionalized by ferrocene groups for bioelectrochemical devices
  • 2012
  • Ingår i: MRS Online Proceedings Library. - : Cambridge University Press. - 9781605114286
  • Konferensbidrag (refereegranskat)abstract
    • The present work reports the covalent functionalization of few-wall CNTs (FWCNTs) by ferrocene derivatives to i) improve their dispersion efficiency in water and ii) to graft electroactive chemical groups on their side-walls in order to promote electron transfer to biomolecules. The functionalized CNTs (f-CNTs) are used to modify a glassy carbon electrode and this modified electrode is used for oxidizing the cofactor NADH (dihydronicotinamide adenine dinucleotide).
  •  
6.
  • Devaux, Xavier, et al. (författare)
  • Covalent Functionalization of HiPco Single-Walled Carbon Nanotubes : Differences in the Oxidizing Action of H2SO4 and HNO3 during a Soft Oxidation Process
  • 2015
  • Ingår i: ChemPhysChem. - : Wiley. - 1439-4235 .- 1439-7641. ; 16:12, s. 2692-2701
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of a study on the evolution of HiPco single-walled carbon nanotubes during the oxidizing action of H2SO4 and HNO3 are presented. The process conditions used have been chosen so as to avoid any significant damage to the nanotube structure. The type and level of functionalization, the location of the grafted functions on the surface of the nanotube and the changes in morphological characteristics of the samples were examined by using a wide and complementary range of analytical techniques. We propose an explanation for the differences in the oxidizing action of sulfuric and nitric acids. The combined results allow us to suggest possible reaction mechanisms that occur on the surface of the nanotube.
  •  
7.
  • Hanan, Abdul, et al. (författare)
  • PdO@CoSe2 composites: efficient electrocatalysts for water oxidation in alkaline media
  • 2022
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 13:1, s. 743-755
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm(-2) with a Tafel Slope value of 57 mV dec(-1). The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.
  •  
8.
  •  
9.
  • Kumar, Shusheel, et al. (författare)
  • Transforming NiCo2O4 nanorods into nanoparticles using citrus lemon juice enhancing electrochemical properties for asymmetric supercapacitor and water oxidation
  • 2023
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 13:27, s. 18614-18626
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, the nanostructured nickel–cobalt bimetallic oxide (NiCo2O4) material with high electrochemical activity has received intensive attention. Beside this, the biomass assisted synthesis of NiCo2O4 is gaining popularity due to its advantageous features such as being low cost, simplicity, minimal use of toxic chemicals, and environment-friendly and ecofriendly nature. The electrochemical activity of spinel NiCo2O4 is associated with its mixed metal oxidation states. Therefore, much attention has been paid to the crystal quality, morphology and tunable surface chemistry of NiCo2O4 nanostructures. In this study, we have used citrus lemon juice consisting of a variety of chemical compounds having the properties of a stabilizing agent, capping agent and chelating agent. Moreover, the presence of several acidic chemical compounds in citrus lemon juice changed the pH of the growth solution and consequently we observed surface modified and structural changes that were found to be very effective for the development of energy conversion and energy storage systems. These naturally occurring compounds in citrus lemon juice played a dynamic role in transforming the nanorod morphology of NiCo2O4 into small and well-packed nanoparticles. Hence, the prepared NiCo2O4 nanostructures exhibited a new surface-oriented nanoparticle morphology, high concentration of defects on the surface (especially oxygen vacancies), sufficient ionic diffusion and reaction of electrolytic ions, enhanced electrical conductivity, and favorable reaction kinetics at the interface. The electrocatalytic properties of the NiCo2O4 nanostructures were studied in oxygen evolution reaction (OER) at a low overpotential of 250 mV for 10 mA cm−2, Tafel slope of 98 mV dec−1, and durability of 40 h. Moreover, an asymmetric supercapacitor was produced and the obtained results indicated a high specific capacitance of (Cs) of 1519.19 F g−1, and energy density of 33.08 W h kg−1 at 0.8 A g−1. The enhanced electrochemical performance could be attributed to the favorable structural changes, surface modification, and surface crystal facet exposure due to the use of citrus lemon juice. The proposed method of transformation of nanorod to nanoparticles could be used for the design of a new generation of efficient electrocatalyst materials for energy storage and conversion uses.
  •  
10.
  • Liu, Jie, et al. (författare)
  • Preferential functionalisation of carbon nanotubes probed by Raman spectroscopy
  • 2008
  • Ingår i: Physica. E, Low-Dimensional systems and nanostructures. - : Elsevier BV. - 1386-9477 .- 1873-1759. ; 40:7, s. 2343-2346
  • Tidskriftsartikel (refereegranskat)abstract
    • We have chemically grafted methoxypheny functions on HiPco single-walled carbon nanotubes through a radical procedure. To characterise the efficiency of this functionalisation, the materials have been examined via Raman spectroscopy at five laser excitation energies (1.96, 2.33, 2.41, 2.54 and 2.71 eV). This work concentrates mostly on the radial breathing mode band between 150 and 300 cm1. Clear evidence is put forward showing that those tubes which are preferentially functionalised are the smaller-diameter semiconducting tubes and the metallic tubes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy