SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vincentelli Federico M.) "

Sökning: WFRF:(Vincentelli Federico M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cristina Baglio, Maria, et al. (författare)
  • A Wildly Flickering Jet in the Black Hole X-Ray Binary MAXI J1535-571
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 867:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the results of optical, near-infrared (NIR), and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535-571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004-58012), the source shows an optical-NIR spectrum that is consistent with an optically thin synchrotron power law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a dereddened flux density of 100 mJy in the mid-infrared, making MAXI J1535-571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as being due to the suppression of the jet emission, similar to the accretion-ejection coupling seen in other BHBs. However, MAXI J1535-571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of ∼15%-22%, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms (≲7%). These results represent an excellent case of multiwavelength jet spectral timing and demonstrate how rich, multiwavelength time-resolved data of X-ray binaries over accretion state transitions can help in refining models of the disk-jet connection and jet launching in these systems.
  •  
2.
  • Vincentelli, Federico M., et al. (författare)
  • A shared accretion instability for black holes and neutron stars
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615:7950, s. 45-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Accretion disks around compact objects are expected to enter an unstable phase at high luminosity1. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales2. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole3-5. Although there are hints of these cycles in a few isolated cases6-10, their apparent absence in the variable emission of most bright accreting neutron stars and black holes has been a continuing puzzle11. Here we report the presence of the same multiwavelength instability around an accreting neutron star. Moreover, we show that the variability across the electromagnetic spectrum-from radio to X-ray-of both black holes and neutron stars at high accretion rates can be explained consistently if the accretion disks are unstable, producing relativistic ejections during transitions that deplete or refill the inner disk. Such a new association allows us to identify the main physical components responsible for the fast multiwavelength variability of highly accreting compact objects.
  •  
3.
  • Lucchini, M., et al. (författare)
  • Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836-194
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:4, s. 5910-5926
  • Tidskriftsartikel (refereegranskat)abstract
    • During outbursts, the observational properties of black hole X-ray binaries vary on time-scales of days to months. These relatively short time-scales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonization of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper, we explore the disc-jet connection by modelling the multiwavelength emission of MAXI J1836-194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet's physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are subrelativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy