SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vincze Markus) "

Sökning: WFRF:(Vincze Markus)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bajones, Markus, et al. (författare)
  • Hobbit : Providing Fall Detection and Prevention for the Elderly in the Real World
  • 2018
  • Ingår i: Journal of Robotics. - : Hindawi Limited. - 1687-9600 .- 1687-9619. ; 2018, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the robot developed within the Hobbit project, a socially assistive service robot aiming at the challenge of enabling prolonged independent living of elderly people in their own homes. We present the second prototype (Hobbit PT2) in terms of hardware and functionality improvements following first user studies. Our main contribution lies within the description of all components developed within the Hobbit project, leading to autonomous operation of 371 days during field trials in Austria, Greece, and Sweden. In these field trials, we studied how 18 elderly users (aged 75 years and older) lived with the autonomously interacting service robot over multiple weeks. To the best of our knowledge, this is the first time a multifunctional, low-cost service robot equipped with a manipulator was studied and evaluated for several weeks under real-world conditions. We show that Hobbit’s adaptive approach towards the user increasingly eased the interaction between the users and Hobbit. We provide lessons learned regarding the need for adaptive behavior coordination, support during emergency situations, and clear communication of robotic actions and their consequences for fellow researchers who are developing an autonomous, low-cost service robot designed to interact with their users in domestic contexts. Our trials show the necessity to move out into actual user homes, as only there can we encounter issues such as misinterpretation of actions during unscripted human-robot interaction.
  •  
2.
  • Bajones, Markus, et al. (författare)
  • Results of Field Trials with a Mobile Service Robot for Older Adults in 16 Private Households
  • 2019
  • Ingår i: ACM Transactions on Human-Robot Interaction. - : Association for Computing Machinery (ACM). - 2573-9522. ; 9:2, s. 10:1-10:27
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we present results obtained from field trials with the Hobbit robotic platform, an assistive, social service robot aiming at enabling prolonged independent living of older adults in their own homes. Our main contribution lies within the detailed results on perceived safety, usability, and acceptance from field trials with autonomous robots in real homes of older users. In these field trials, we studied how 16 older adults (75 plus) lived with autonomously interacting service robots over multiple weeks. Robots have been employed for periods of months previously in home environments for older people, and some have been tested with manipulation abilities, but this is the first time a study has tested a robot in private homes that provided the combination of manipulation abilities, autonomous navigation, and nonscheduled interaction for an extended period of time. This article aims to explore how older adults interact with such a robot in their private homes. Our results show that all users interacted with Hobbit daily, rated most functions as well working, and reported that they believe that Hobbit will be part of future elderly care. We show that Hobbit's adaptive behavior approach towards the user increasingly eased the interaction between the users and the robot. Our trials reveal the necessity to move into actual users' homes, as only there, we encounter real-world challenges and demonstrate issues such as misinterpretation of actions during non-scripted human-robot interaction.
  •  
3.
  •  
4.
  •  
5.
  • Bohg, Jeannette, et al. (författare)
  • Task-based Grasp Adaptation on a Humanoid Robot
  • 2012
  • Ingår i: Proceedings 10th IFAC Symposium on Robot Control. ; , s. 779-786
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.
  •  
6.
  • Hjelm, Martin, 1980- (författare)
  • Holistic Grasping: Affordances, Grasp Semantics, Task Constraints
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Most of us perform grasping actions over a thousand times per day without giving it much consideration, be it from driving to drinking coffee. Learning robots the same ease when it comes to grasping has been a goal for the robotics research community for decades.The reason for the slow progress lays mainly in the inferiority of the robot sensorimotor system. Robotic grippers are often non-compliant, lack the degrees of freedom of human hands, and haptic sensors are rudimentary involving significantly less resolution and sensitivity than in humans.Research has therefore focused on engineering solutions that center on the stability of the grasp. This involves specifying complex functions and search strategies detailing the interaction between the digits of the robot and the surface of the object. Given the amount of variation in materials, shapes, and ability to deform it seems infeasible to analytically formulate such a gripper-to-shape mapping. Many researchers have instead looked to data-driven methods for learning the gripper-to-shape mapping as does this thesis.Humans obviously have a similar mapping capability. However, how we grasp an object is determined foremost by what we are going to do with the object. We have priors on task, material, and the dynamics of objects that help guide the grasping process. We also have a deeper understanding of how shape and material relate to our own embodiment.We tie all these aspects together: our understanding of what an object can be used for, how that affects our interaction with it, and how our hand can form to achieve the goal of the manipulation. For us humans grasping is not just a gripper-to-shape mapping it is a holistic process where all parts of the chain matters to the outcome. The focus of this thesis is thus on how to incorporate such a holistic process into robotic grasp planning.  We will address the holistic grasping process through three jointly connected modules. The first is affordance detection and learning to infer the common parts for objects that afford an action, a form of conceptualization of the affordance categories. The second is learning grasp semantics, how shape relates to the gripper configuration. And finally the third is to learn how task constrains the grasping process.We will explore these three parts through the concept of similarity. This translates directly into the idea that we should learn a representation that puts similar types of the entities that we are describing, that is, objects, grasps, and tasks, close to each other in space. We will show that the idea of similarity based representations will help the robot reason about which parts of an object is important for affordance inference, which grasps and tasks are similar, and how the categories relate to each other. Finally, the similarity-based approach will help us tie all parts together in the conceptual demonstration of how a holistic grasping process might be realized.
  •  
7.
  • Kragic, Danica, et al. (författare)
  • Vision for Robotics
  • 2010
  • Ingår i: Foundations and Trends in Robotics. - : Now Publishers. - 1935-8253 .- 1935-8261. ; 1:1, s. 1-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Robot vision refers to the capability of a robot to visually perceive the environment and use this information for execution of various tasks. Visual feedback has been used extensively for robot navigation and obstacle avoidance. In the recent years, there are also examples that include interaction with people and manipulation of objects. In this paper, we review some of the work that goes beyond of using artificial landmarks and fiducial markers for the purpose of implementing visionbased control in robots. We discuss different application areas, both from the systems perspective and individual problems such as object tracking and recognition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy