SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vingron M.) "

Sökning: WFRF:(Vingron M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hu, H., et al. (författare)
  • X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
  • 2016
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:1, s. 133-148
  • Tidskriftsartikel (refereegranskat)abstract
    • X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
  •  
2.
  • Baranasic, D, et al. (författare)
  • Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:7, s. 1037-
  • Tidskriftsartikel (refereegranskat)abstract
    • Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center (https://danio-code.zfin.org) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.
  •  
3.
  •  
4.
  • George, Julie, et al. (författare)
  • Comprehensive genomic profiles of small cell lung cancer
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7563, s. 47-U73
  • Tidskriftsartikel (refereegranskat)abstract
    • We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Dex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
  •  
5.
  • Haas, S A, et al. (författare)
  • Genome-scale design of PCR primers and long oligomers for DNA microarrays
  • 2003
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 31:19, s. 5576-5581
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last years, the demand for custom-made cDNA chips/arrays as well as whole genome chips is increasing rapidly. The efficient selection of gene-specific primers/oligomers is of the utmost importance for the successful production of such chips. We developed GenomePRIDE, a highly flexible and scalable software for designing primers/oligomers for large-scale projects. The program is able to generate either long oligomers (40-70 bases), or PCR primers for the amplification of gene-specific DNA fragments of user-defined length. Additionally, primers can be designed in-frame in order to facilitate large-scale cloning into expression vectors. Furthermore, GenomePRIDE can be adapted to specific applications such as the generation of genomic amplicon arrays or the design of fragments specific for alternative splice isoforms. We tested the performance of GenomePRIDE on the entire genomes of Listeria monocytogenes (1584 gene-specific PCRs, 48 long oligomers) as well as of eukaryotes such as Schizosaccharomyces pombe (5006 gene-specific PCRs), and Drosophila melanogaster (21306 gene-specific PCRs). With its computing speed of 1000 primer pairs per hour and a PCR amplification success of 99%, GenomePRIDE represents an extremely cost- and time-effective program.
  •  
6.
  • Xue, Yongtao, et al. (författare)
  • A DNA microarray for fission yeast : minimal changes in global gene expression after temperature shift
  • 2004
  • Ingår i: Yeast. - : Wiley. - 0749-503X .- 1097-0061. ; 21:1, s. 25-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Completion of the fission yeast genome sequence has opened up possibilities for post-genomic approaches. We have constructed a DNA microarray for genome-wide gene expression analysis in fission yeast. The microarray contains DNA fragments, PCR-amplified from a genomic DNA template, that represent >99% of the 5000 or so annotated fission yeast genes, as well as a number of control sequences. The GenomePRIDE software used attempts to design similarly sized DNA fragments corresponding to gene regions within single exons, near the 3'-end of genes that lack homology to other fission yeast genes. To validate the design and utility of the array, we studied expression changes after a 2 h temperature shift from 25degreesC to 36degreesC, conditions widely used when studying temperature-sensitive mutants. Obligingly, the vast majority of genes do not change more than two-fold, supporting the widely held view that temperature-shift experiments specifically reveal phenotypes associated with temperature-sensitive mutants. However, we did identify a small group of genes that showed a reproducible change in expression. Importantly, most of these corresponded to previously characterized heat-shock genes, whose expression has been reported to change after more extreme temperature shifts than those used here.. We conclude that the DNA microarray represents a useful resource for fission yeast researchers as well as the broader yeast community, since it will facilitate comparison with the distantly related budding yeast, Saccharomyces cerevisiae. To maximize the utility of this resource, the array and its component parts are fully described in On-line Supplementary Information and are also available commercially.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy