SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Virkkula A.) "

Sökning: WFRF:(Virkkula A.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
3.
  • Mueller, T., et al. (författare)
  • Characterization and intercomparison of aerosol absorption photometers : result of two intercomparison workshops
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:2, s. 245-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.
  •  
4.
  • Lappalainen, H. K., et al. (författare)
  • Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China - a Pan-Eurasian Experiment (PEEX) programme perspective
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:7, s. 4413-4469
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Tomasi, C., et al. (författare)
  • Aerosols in polar regions : A historical overview based on optical depth and in situ observations
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D16, s. D16205-
  • Forskningsöversikt (refereegranskat)abstract
    • Large sets of filtered actinometer, filtered pyrheliometer and Sun photometer measurements have been carried out over the past 30 years by various groups at different Arctic and Antarctic sites and for different time periods. They were examined to estimate ensemble average, long-term trends of the summer background aerosol optical depth AOD(500 nm) in the polar regions ( omitting the data influenced by Arctic haze and volcanic eruptions). The trend for the Arctic was estimated to be between -1.6% and -2.0% per year over 30 years, depending on location. No significant trend was observed for Antarctica. The time patterns of AOD( 500 nm) and angstrom ngstrom's parameters a and beta measured with Sun photometers during the last 20 years at various Arctic and Antarctic sites are also presented. They give a measure of the large variations of these parameters due to El Chichon, Pinatubo, and Cerro Hudson volcanic particles, Arctic haze episodes most frequent in winter and spring, and the transport of Asian dust and boreal smokes to the Arctic region. Evidence is also shown of marked differences between the aerosol optical parameters measured at coastal and high-altitude sites in Antarctica. In situ optical and chemical composition parameters of aerosol particles measured at Arctic and Antarctic sites are also examined to achieve more complete information on the multimodal size distribution shape parameters and their radiative properties. A characterization of aerosol radiative parameters is also defined by plotting the daily mean values of a as a function of AOD( 500 nm), separately for the two polar regions, allowing the identification of different clusters related to fifteen aerosol classes, for which the spectral values of complex refractive index and single scattering albedo were evaluated.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy