SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Virta M. P. J.) "

Sökning: WFRF:(Virta M. P. J.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Larsson, D. G. Joakim, 1969, et al. (författare)
  • Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance
  • 2018
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 117, s. 132-138
  • Forskningsöversikt (refereegranskat)abstract
    • There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.(1)
  •  
2.
  • Koffert, J. P., et al. (författare)
  • Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial
  • 2017
  • Ingår i: Diabetes Research and Clinical Practice. - : Elsevier BV. - 0168-8227 .- 1872-8227. ; 131, s. 208-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Metformin therapy is associated with diffuse intestinal 18F-fluoro-deoxyglucose (FDG) accumulation in clinical diagnostics using routine FDG-PET imaging. We aimed to study whether metformin induced glucose uptake in intestine is associated with the improved glycaemic control in patients with type 2 diabetes. Therefore, we compared the effects of metformin and rosiglitazone on intestinal glucose metabolism in patients with type 2 diabetes in a randomized placebo controlled clinical trial, and further, to understand the underlying mechanism, evaluated the effect of metformin in rats. Methods Forty-one patients with newly diagnosed type 2 diabetes were randomized to metformin (1g, b.i.d), rosiglitazone (4mg, b.i.d), or placebo in a 26-week double-blind trial. Tissue specific intestinal glucose uptake was measured before and after the treatment period using FDG-PET during euglycemic hyperinsulinemia. In addition, rats were treated with metformin or vehicle for 12weeks, and intestinal FDG uptake was measured in vivo and with autoradiography. Results Glucose uptake increased 2-fold in the small intestine and 3-fold in the colon for the metformin group and associated with improved glycemic control. Rosiglitazone increased only slightly intestinal glucose uptake. In rodents, metformin treatment enhanced intestinal FDG retention (P=0.002), which was localized in the mucosal enterocytes of the small intestine. Conclusions Metformin treatment significantly enhances intestinal glucose uptake from the circulation of patients with type 2 diabetes. This intestine-specific effect is associated with improved glycemic control and localized to mucosal layer. These human findings demonstrate directs effect of metformin on intestinal metabolism and elucidate the actions of metformin. Clinical trial number NCT02526615 © 2017 The Authors
  •  
3.
  • Graco-Roza, Caio, et al. (författare)
  • Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities
  • 2022
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1399-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.Location: Global.Time period: 1990 to present.Major taxa studied: From diatoms to mammals.Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
  •  
4.
  • Virta, J, et al. (författare)
  • Impact of metabolic substrate modification on myocardial efficiency in a rat model of obesity and diabetes
  • 2022
  • Ingår i: European Heart Journal, Supplement. - : Oxford University Press (OUP). - 1520-765X .- 0195-668X .- 1522-9645. ; 43:2, s. 3076-3076
  • Konferensbidrag (refereegranskat)abstract
    • BackgroundCongenic leptin receptor deficient rat generated by introgression of the Koletsky leptin receptor mutation into BioBreeding Diabetes Resistant rat (BBDR.lepr−/−) is a novel animal model combining obesity, systemic insulin resistance and diabetes. Systemic insulin resistance is associated with reduced myocardial glucose utilization, but its effect on myocardial external efficiency, i.e. the ability of the myocardium to convert energy into external stroke work, remains uncertain.PurposeTo characterize cardiac energy metabolism and function in BBDR.lepr−/− rats and to study the effect of dipeptidyl peptidase 4 (DPP-4) inhibitor linagliptin in this model.MethodsCardiac phenotype was evaluated in six-month-old male BBDR.lepr−/− rats (n=11) and age-matched male non-diabetic lean control littermates (BBDR.lepr+/− or BBDR.lepr+/+ rats, n=14). Of these, 7 BBDR.lepr−/− rats and 6 controls underwent cardiac ultrasound, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT), and [11C]acetate PET in order to evaluate cardiac structure and function as well as glucose and oxidative metabolism. In the remaining rats, fatty acid metabolism was evaluated by [18F]fluorothia-6-heptadecanoic acid ([18F]FTHA) PET/CT. In the linagliptin intervention study, 25 BBDR.lepr−/− male rats were randomly divided into control group (n=11) that received regular chow diet and linagliptin group (n=14) that received linagliptin (10mg/kg/d) mixed in the chow diet for three months. After the intervention, the rats underwent cardiac ultrasound, [18F]FDG PET/CT, and [11C]acetate PET.ResultsCompared with controls, BBDR.lepr−/− rats showed increased left ventricle (LV) mass (∼40%, p>0.001) and higher systolic blood pressure (∼10%, p=0.02). However, fractional shortening and cardiac output were similar in both groups. Myocardial fractional uptake rate of glucose measured with [18F]FDG PET was significantly reduced (∼86%, p=0.004) (Fig. 1A, E), whereas myocardial fatty acid uptake measured by [18F]FTHA PET was not significantly increased (free fatty acid (FFA) corrected standardized uptake value (SUV) ∼21%, p=0.54) (Fig. 1B) in BBDR.lepr−/− compared to controls. Myocardial oxygen consumption assessed by [11C]acetate PET was similar in both groups (Fig. 1C, E), but LV work per gram of myocardium was reduced (∼28%, p=0.001) resulting in reduced myocardial external efficiency (∼21%, p=0.03) (Fig. 1D) in BBDR.lepr−/− compared to controls. Treatment with linagliptin significantly enhanced myocardial fractional uptake rate of glucose (∼166%, p=0.006) (Fig. 2A, C), but had no effect on efficiency of cardiac work (Fig. 2B).ConclusionsObese and diabetic BBDR.lepr−/− rats demonstrate LV hypertrophy and markedly reduced myocardial glucose utilization associated with impaired myocardial external efficiency despite normal LV systolic function. Enhancement of myocardial glucose uptake by linagliptin did not improve efficiency of cardiac work.Funding AcknowledgementType of funding sources: Public grant(s) – EU funding. Main funding source(s): IMI-SUMMIT
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Karkman, Antti, et al. (författare)
  • Antibiotic-Resistance Genes in Waste Water
  • 2018
  • Ingår i: Trends in Microbiology. - : Elsevier BV. - 0966-842X. ; 26:3, s. 220-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Waste water and waste water treatment plants can act as reservoirs and environmental suppliers of antibiotic resistance. They have also been proposed to be hotspots for horizontal gene transfer, enabling the spread of antibiotic resistance genes between different bacterial species. Waste water contains antibiotics, disinfectants, and metals which can form a selection pressure for antibiotic resistance, even in low concentrations. Our knowledge of antibiotic resistance in waste water has increased tremendously in the past few years with advances in the molecular methods available. However, there are still some gaps in our knowledge on the subject, such as how active is horizontal gene transfer in waste water and what is the role of the waste water treatment plant in the environmental resistome? The purpose of this review is to briefly describe some of the main methods for studying antibiotic resistance in waste waters and the latest research and main knowledge gaps on the issue. In addition, some future research directions are proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy