SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Viscasillas Vázquez C.) "

Sökning: WFRF:(Viscasillas Vázquez C.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
3.
  • Magrini, L., et al. (författare)
  • The Gaia -ESO survey: Mixing processes in low-mass stars traced by lithium abundance in cluster and field stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to constrain the mixing processes in low-mass stars by investigating the behaviour of the Li surface abundance after the main sequence. We take advantage of the data from the sixth internal data release of Gaia-ESO, IDR6, and from the Gaia Early Data Release 3, EDR3s. Methods. We selected a sample of main-sequence, sub-giant, and giant stars in which the Li abundance is measured by the Gaia-ESO survey. These stars belong to 57 open clusters with ages from 130 Myr to about 7 Gyr and to Milky Way fields, covering a range in [Fe/H] between -1.0and +0.5 dex, with few stars between -1.0 and -2.5dex. We studied the behaviour of the Li abundances as a function of stellar parameters. We inferred the masses of giant stars in clusters from the main-sequence turn-off masses, and for field stars through comparison with stellar evolution models using a maximum likelihood technique. We compared the observed Li behaviour in field giant stars and in giant stars belonging to individual clusters with the predictions of a set of classical models and of models with mixing induced by rotation and thermohaline instability. Results. The comparison with stellar evolution models confirms that classical models cannot reproduce the observed lithium abundances in the metallicity and mass regimes covered by the data. The models that include the effects of both rotation-induced mixing and thermohaline instability account for the Li abundance trends observed in our sample in all metallicity and mass ranges. The differences between the results of the classical models and of the rotation models largely differ (up to 2 dex), making lithium the best element with which to constrain stellar mixing processes in low-mass stars. We discuss the nature of a sample of Li-rich stars. Conclusions. We demonstrate that the evolution of the surface abundance of Li in giant stars is a powerful tool for constraining theoretical stellar evolution models, allowing us to distinguish the effect of different mixing processes. For stars with well-determined masses, we find a better agreement of observed surface abundances and models with rotation-induced and thermohaline mixing. Rotation effects dominate during the main sequence and the first phases of the post-main-sequence evolution, and the thermohaline induced mixing after the bump in the luminosity function.
  •  
4.
  • Viscasillas Vázquez, C., et al. (författare)
  • The Gaia -ESO survey : Age-chemical-clock relations spatially resolved in the Galactic disc
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The last decade has seen a revolution in our knowledge of the Galaxy thanks to the Gaia and asteroseismic space missions and the ground-based spectroscopic surveys. Aims. To complete this picture, it is necessary to map the ages of its stellar populations. During recent years, the dependence on time of abundance ratios involving slow (s) neutron-capture and α elements (called chemical-clocks) has been used to provide estimates of stellar ages, usually in a limited volume close to the Sun. We aim to analyse the relations of chemical clocks in the Galactic disc extending the range to RGC∼ 6- 20 kpc. Methods. Using the sixth internal data release of the Gaia-ESO survey, we calibrated several relations between stellar ages and abundance ratios [s/α] using a sample of open clusters, the largest one so far used with this aim (62 clusters). Thanks to their wide galactocentric coverage, we investigated the radial variations of the shape of these relations, confirming their non-universality. Results. The multi-variate relations allowed us to infer stellar ages for field stars. We estimated our accuracy (ranging from 0.0 to -0.9 Gyr) and precision (from 0.4 to 2.3 Gyr) in recovering the global ages of open clusters, and the ages of their individual members. We applied the relations with the highest correlation coefficients to the field star population, finding an older population at lower metallicity and higher [α/Fe] in the thin disc, and a younger one at higher [Fe/H] and low [α/Fe], as expected. Conclusion. We confirm that there is no single age-chemical clock relationship valid for the whole disc, but that there is a dependence on the galactocentric position, which is related to the radial variation of the star formation history combined with the non-monotonic dependence on metallicity of the yields of the s-process elements from low- and intermediate-mass stars. Finally, the abundance ratios [Ba/α] are more sensitive to age than those with [Y/α] for young disc stars, and their slopes vary less with galactocentric distance. We remind the reader that the application of such relationships to field stars is only of statistical value.
  •  
5.
  • Magrini, L., et al. (författare)
  • Gaia -ESO survey : Lithium abundances in open cluster Red Clump stars
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. It has recently been suggested that all giant stars with masses below 2 M? suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). Aims. We test if the above result can be confirmed in a sample of RC and RGB stars that are members of open clusters. Methods. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 M? ). We compare these observations with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. Results. In six clusters, we find close to 35% of RC stars have Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation has been for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that this possible Li production is ubiquitous. For about 65% of RC giants, we can only determine upper limits in abundances that could be hiding very low Li content. Conclusions. Our results indicate the possibility that Li is being produced in the RC, at levels that would not typically permit the classification of these the stars as Li rich. The determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by subsequent Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models including an additional mixing episode close to the He flash.
  •  
6.
  • Magrini, L., et al. (författare)
  • The Gaia-ESO survey : Mapping the shape and evolution of the radial abundance gradients with open clusters
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangling the scenarios of formation and evolution of the Galaxy.Aims: In this paper we used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance-to-iron ratio gradients, and their time evolution.Methods: We selected member stars in 62 open clusters, with ages from 0.1 to about 7 Gyr, located in the Galactic thin disc at galactocentric radii (R-GC) from about 6 to 21 kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins.Results: The [Fe/H] gradient has a slope of -0.054 dex kpc(-1). It can be better approximated with a two-slope shape, steeper for R-GC <= 11.2 kpc and flatter in the outer regions. We saw different behaviours for elements belonging to different channels. For the time evolution of the gradient, we found that the youngest clusters (age < 1 Gyr) in the inner disc have lower metallicity than their older counterparts and that they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggest that the most likely one may be related to a bias introduced by the standard spectroscopic analysis producing lower metallicities in the analysis of low-gravity stars.Conclusions: To delineate the shape of the 'true' gradient, we should most likely limit our analysis to stars with low surface gravity log g> 2.5 and microturbulent parameter xi< 1.8 km s(-1). Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc over the last 3 Gyr. We found a secondary role of cluster migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.
  •  
7.
  • van der Swaelmen, M., et al. (författare)
  • The Gaia-ESO survey : Placing constraints on the origin of r-process elements
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: A renewed interest in the origin of r-process elements has been stimulated by the multi-messenger observation of the gravitational event GW170817, with the detection of both gravitational waves and electromagnetic waves corresponding to the merger of two neutron stars. Such a phenomenon has been proposed as one of the main sources of the r-process. However, the origin of the r-process elements at different metallicities is still under debate.Aims: We aim at investigate the origin of the r-process elements in the Galactic thin-disc population.Methods: From the sixth internal data release of the Gaia-ESO, we have collected a large sample of Milky Way (MW) thin- and thick-disc stars for which abundances of Eu, O, and Mg are available. The sample consists of members of 62 open clusters (OCs), located at a Galactocentric radius between similar to 5kpc and similar to 20kpc in the disc, in the metallicity range [- 0.5,0.4], and covering an age interval from 0.1 to 7 Gy, and about 1300 Milky Way disc field stars in the metallicity range [- 1.5,0.5]. We compare the observations with the results of a chemical evolution model, in which we varied the nucleosynthesis sources for the three elements considered.Results: Our main result is that Eu in the thin disc is predominantly produced by sources with short lifetimes, such as magneto-rotationally driven SNe. There is no strong evidence for additional sources at delayed times.Conclusions: Our findings do not imply that there cannot be a contribution from mergers of neutron stars in other environments, as in the halo or in dwarf spheroidal galaxies, but such a contribution is not needed to explain Eu abundances at thin-disc metallicities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy