SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vit Oliver) "

Sökning: WFRF:(Vit Oliver)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Krizek, Filip, et al. (författare)
  • Atomically sharp domain walls in an antiferromagnet
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field–insensitive neuromorphic functionalities.
  •  
3.
  • McElvaney, Noel G., et al. (författare)
  • Long-term efficacy and safety of α1 proteinase inhibitor treatment for emphysema caused by severe α1 antitrypsin deficiency : an open-label extension trial (RAPID-OLE)
  • 2017
  • Ingår i: The Lancet Respiratory Medicine. - 2213-2600. ; 5:1, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Purified α1 proteinase inhibitor (A1PI) slowed emphysema progression in patients with severe α1 antitrypsin deficiency in a randomised controlled trial (RAPID-RCT), which was followed by an open-label extension trial (RAPID-OLE). The aim was to investigate the prolonged treatment effect of A1PI on the progression of emphysema as assessed by the loss of lung density in relation to RAPID-RCT. Methods Patients who had received either A1PI treatment (Zemaira or Respreeza; early-start group) or placebo (delayed-start group) in the RAPID-RCT trial were included in this 2-year open-label extension trial (RAPID-OLE). Patients from 22 hospitals in 11 countries outside of the USA received 60 mg/kg per week A1PI. The primary endpoint was annual rate of adjusted 15th percentile lung density loss measured using CT in the intention-to-treat population with a mixed-effects regression model. This trial is registered with ClinicalTrials.gov, number NCT00670007. Findings Between March 1, 2006, and Oct 13, 2010, 140 patients from RAPID-RCT entered RAPID-OLE: 76 from the early-start group and 64 from the delayed-start group. Between day 1 and month 24 (RAPID-RCT), the rate of lung density loss in RAPID-OLE patients was lower in the early-start group (−1·51 g/L per year [SE 0·25] at total lung capacity [TLC]; −1·55 g/L per year [0·24] at TLC plus functional residual capacity [FRC]; and −1·60 g/L per year [0·26] at FRC) than in the delayed-start group (−2·26 g/L per year [0·27] at TLC; −2·16 g/L per year [0·26] at TLC plus FRC, and −2·05 g/L per year [0·28] at FRC). Between months 24 and 48, the rate of lung density loss was reduced in delayed-start patients (from −2·26 g/L per year to −1·26 g/L per year), but no significant difference was seen in the rate in early-start patients during this time period (−1·51 g/L per year to −1·63 g/L per year), thus in early-start patients the efficacy was sustained to month 48. Interpretation RAPID-OLE supports the continued efficacy of A1PI in slowing disease progression during 4 years of treatment. Lost lung density was never recovered, highlighting the importance of early intervention with A1PI treatment. Funding CSL Behring.
  •  
4.
  • Reimers, Sonka, et al. (författare)
  • Defect-driven antiferromagnetic domain walls in CuMnAs films
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
  •  
5.
  • Reimers, Sonka, et al. (författare)
  • Defect-driven antiferromagnetic domain walls in CuMnAs films
  • 2023
  • Ingår i: 2023 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2023 - Proceedings. - 9798350338362
  • Konferensbidrag (refereegranskat)abstract
    • Antiferromagnetic (AF) materials offer a route to realising high-speed, high-density data storage devices that are robust against magnetic fields due to their intrinsic dynamics in the THz-regime and the lack magnetic stray fields. The key to functionality and efficiency is the control of AF domains and domain walls. Although AF domain structures are known to be sensitive to magnetoelastic effects, the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning x-ray diffraction microscopy and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects, which determine the location and orientation of 180° and 90° domain walls. The results emphasise the high sensitivity of the AF domain structure to the crystallographic nanostructure and provide a route to optimisng device performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy