SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Viterbo P.) "

Sökning: WFRF:(Viterbo P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bock, O., et al. (författare)
  • Use of GNSS Tropospheric Products for Climate Monitoring (Working Group 3)
  • 2020
  • Ingår i: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate. - Cham : Springer International Publishing. - 9783030139001 ; , s. 267-402
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • There has been growing interest in recent years in the use of homogeneously reprocessed ground-based GNSS, VLBI, and DORIS measurements for climate applications. Existing datasets are reviewed and the sensitivity of tropospheric estimates to the processing details is discussed. The uncertainty in the derived IWV estimates and linear trends is around 1 kg m^2 RMS and ± 0.3 kg m^2 per decade, respectively. Standardized methods for ZTD outlier detection and IWV conversion are proposed. The homogeneity of final time series is limited however by changes in the stations equipment and environment. Various homogenization algorithms have been evaluated based on a synthetic benchmark dataset. The uncertainty of trends estimated from the homogenized times series is estimated to ±0.5 kg m^2 per decade. Reprocessed GNSS IWV data are analysed along with satellites data, reanalyses and global and regional climate model simulations. A selection of global and regional reprocessed GNSS datasets and ERA-interim reanalysis are made available through the GOP-TropDB tropospheric database and online service. A new tropo SINEX format, providing new features and simplifications, was developed and it is going to be adopted by all the IAG services.
  •  
2.
  • Guerova, G., et al. (författare)
  • National Status Reports
  • 2020
  • Ingår i: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate. - Cham : Springer International Publishing. - 9783030139001 ; , s. 403-481
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • In this section a summary of the national progress reports is given. GNSS4SWEC Management Committee (MC) members provided outline of the work conducted in their countries combining input from different partners involved. In the COST Action paticipated member from 32 COST countries, 1 Near Neighbour Country and 8 Intrantional Partners from Australia, Canada, Hong Kong and USA. The text reflects the state as of 1 January 2018.
  •  
3.
  •  
4.
  •  
5.
  • Gustafsson, David, et al. (författare)
  • Boreal forest surface parameterization in the ECMWF model - 1D test with NOPEX long-term data
  • 2003
  • Ingår i: Journal of applied meteorology (1988). - 0894-8763 .- 1520-0450. ; 42:1, s. 95-112
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the present study was to assess the performance and recent improvements of the land surface scheme used operationally in the European Centre for Medium-Range Weather Forecasts (ECMWF) in a Scandinavian boreal forest climate/ecosystem. The previous (the 1999 scheme of P. Viterbo and A. K. Betts) and the new (Tiled ECMWF Surface Scheme for Exchange Processes over Land, TESSEL) surface schemes were validated by single-column runs against data from NOPEX (Northern Hemisphere Climate-Processes Land-Surface Experiment). Driving and validation datasets were prepared for a 3-yr period (1994-96). The new surface scheme, with separate surface energy balances for subgrid fractions (tiling), improved predictions of seasonal as well as diurnal variation in surface energy fluxes in comparison with the old scheme. Simulated wintertime evaporation improved significantly as a consequence of the introduced additional aerodynamic resistance for evaporation from snow lying under high vegetation. Simulated springtime evaporation also improved because the limitation of transpiration in frozen soils was now accounted for. However, downward sensible heat flux was still underestimated during winter, especially at nighttime, whereas soil temperatures were underestimated in winter and overestimated in summer. The new scheme also underestimated evaporation during dry periods in summer, whereas soil moisture was overestimated. Sensitivity tests showed that further improvements of simulated surface heat fluxes and soil temperatures could be obtained by calibration of parameters governing the coupling between the surface and the atmosphere and the ground heat flux, and parameters governing the water uptake by the vegetation. Model performance also improved when the seasonal variation in vegetation properties was included.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy