SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Viveiros M) "

Sökning: WFRF:(Viveiros M)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  •  
5.
  • Froberg, Gabrielle, et al. (författare)
  • Towards clinical breakpoints for non-tuberculous mycobacteria-Determination of epidemiological cut off values for the Mycobacterium avium complex and Mycobacterium abscessus using broth microdilution
  • 2023
  • Ingår i: Clinical Microbiology and Infection. - : ELSEVIER SCI LTD. - 1198-743X .- 1469-0691. ; 29:6, s. 758-764
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: For non-tuberculous mycobacteria (NTM), minimum inhibitory concentration (MIC) distri-butions of wild-type isolates have not been systematically evaluated despite their importance for establishing antimicrobial susceptibility testing (AST) breakpoints.Methods: We gathered MIC distributions for drugs used against the Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) obtained by commercial broth microdilution (SLOMYCOI and RAPMYCOI) from 12 laboratories. Epidemiological cut-off values (ECOFFs) and tentative ECOFFs (TEC-OFFs) were determined by EUCAST methodology including quality control (QC) strains.Results: The clarithromycin ECOFF was 16 mg/L for M. avium (n = 1271) whereas TECOFFs were 8 mg/L for M. intracellulare (n = 415) and 1 mg/L for MAB (n = 1014) confirmed by analysing MAB subspecies without inducible macrolide resistance (n = 235). For amikacin, the ECOFFs were 64 mg/L for MAC and MAB. For moxifloxacin, the WT spanned >8 mg/L for both MAC and MAB. For linezolid, the ECOFF and TECOFF were 64 mg/L for M. avium and M. intracellulare, respectively. Current CLSI breakpoints for amikacin (16 mg/L), moxifloxacin (1 mg/L) and linezolid (8 mg/L) divided the corresponding WT dis-tributions. For QC M. avium and M. peregrinum, >= 95% of MIC values were well within recommended QC ranges.Conclusion: As a first step towards clinical breakpoints for NTM, (T)ECOFFs were defined for several antimicrobials against MAC and MAB. Broad wild-type MIC distributions indicate a need for further method refinement which is now under development within the EUCAST subcommittee for anti-mycobacterial drug susceptibility testing. In addition, we showed that several CLSI NTM breakpoints are not consistent in relation to the (T)ECOFFs. Gabrielle Froeuroberg, Clin Microbiol Infect 2023;29:758 (c) 2023 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
  •  
6.
  • Nakatani, Yoshio, et al. (författare)
  • Role of Alanine Racemase Mutations in Mycobacterium tuberculosis D-Cycloserine Resistance
  • 2017
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : AMER SOC MICROBIOLOGY. - 0066-4804 .- 1098-6596. ; 61:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, which demonstrated that these mutations likely confer resistance to D-cycloserine.
  •  
7.
  • Park, Seung Hyun, et al. (författare)
  • Nonpharmaceutical interventions reduce the incidence and mortality of COVID-19: A study based on the survey from the International COVID-19 Research Network (ICRN)
  • 2023
  • Ingår i: Journal of Medical Virology. - : WILEY. - 0146-6615 .- 1096-9071. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently emerged novel coronavirus, "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)," caused a highly contagious disease called coronavirus disease 2019 (COVID-19). It has severely damaged the worlds most developed countries and has turned into a major threat for low- and middle-income countries. Since its emergence in late 2019, medical interventions have been substantial, and most countries relied on public health measures collectively known as nonpharmaceutical interventions (NPIs). We aimed to centralize the accumulative knowledge of NPIs against COVID-19 for each country under one worldwide consortium. International COVID-19 Research Network collaborators developed a cross-sectional online survey to assess the implications of NPIs and sanitary supply on the incidence and mortality of COVID-19. The survey was conducted between January 1 and February 1, 2021, and participants from 92 countries/territories completed it. The association between NPIs, sanitation supplies, and incidence and mortality were examined by multivariate regression, with the log-transformed value of population as an offset value. The majority of countries/territories applied several preventive strategies, including social distancing (100.0%), quarantine (100.0%), isolation (98.9%), and school closure (97.8%). Individual-level preventive measures such as personal hygiene (100.0%) and wearing facial masks (94.6% at hospitals; 93.5% at mass transportation; 91.3% in mass gathering facilities) were also frequently applied. Quarantine at a designated place was negatively associated with incidence and mortality compared to home quarantine. Isolation at a designated place was also associated with reduced mortality compared to home isolation. Recommendations to use sanitizer for personal hygiene reduced incidence compared to the recommendation to use soap. Deprivation of masks was associated with increased incidence. Higher incidence and mortality were found in countries/territories with higher economic levels. Mask deprivation was pervasive regardless of economic level. NPIs against COVID-19 such as using sanitizer, quarantine, and isolation can decrease the incidence and mortality of COVID-19.
  •  
8.
  • Schön, Thomas, et al. (författare)
  • Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives
  • 2017
  • Ingår i: Clinical Microbiology and Infection. - : ELSEVIER SCI LTD. - 1198-743X .- 1469-0691. ; 23:3, s. 154-160
  • Forskningsöversikt (refereegranskat)abstract
    • Drug-resistance testing, or antimicrobial susceptibility testing (AST), is mandatory for Mycobacterium tuberculosis in cases of failure on standard therapy. We reviewed the different methods and techniques of phenotypic and genotypic approaches. Although multiresistant and extensively drug-resistant (MDR/ XDR) tuberculosis is present worldwide, AST for M. tuberculosis (AST-MTB) is still mainly performed according to the resources available rather than the drug-resistance rates. Phenotypic methods, i. e. culture-based AST, are commonly used in high-income countries to confirm susceptibility of new cases of tuberculosis. They are also used to detect resistance in tuberculosis cases with risk factors, in combination with genotypic tests. In low-income countries, genotypic methods screening hot-spot mutations known to confer resistance were found to be easier to perform because they avoid the culture and biosafety constraint. Given that genotypic tests can rapidly detect the prominent mechanisms of resistance, such as the rpoB mutation for rifampicin resistance, we are facing new challenges with the observation of false-resistance (mutations not conferring resistance) and false-susceptibility (mutations different from the common mechanism) results. Phenotypic and genotypic approaches are therefore complementary for obtaining a high sensitivity and specificity for detecting drug resistances and susceptibilities to accurately predict MDR/ XDR cure and to gather relevant data for resistance surveillance. Although AST-MTB was established in the 1960s, there is no consensus reference method for MIC determination against which the numerous AST-MTB techniques can be compared. This information is necessary for assessing in vitro activity and setting breakpoints for future anti-tuberculosis agents. (C) 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
  •  
9.
  • Tozar, T, et al. (författare)
  • Anti-staphylococcal activity and mode of action of thioridazine photoproducts
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 18043-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy