SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vlachopoulos Nick) "

Sökning: WFRF:(Vlachopoulos Nick)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhagavathiachari, Muthuraaman, et al. (författare)
  • A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells
  • 2013
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 15:40, s. 17419-17425
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, cobalt redox electrolyte mediators have emerged as a promising alternative to the commonly used iodide/triiodide redox shuttle in dye-sensitized solar cells (DSCs). Here, we report the successful use of a new quasi-liquid, polymer-based electrolyte containing the Co3+/Co2+ redox mediator in 3-methoxy propionitrile solvent in order to overcome the limitations of high cell resistance, low diffusion coefficient and rapid recombination losses. The performance of the solar cells containing the polymer based electrolytes increased by a factor of 1.2 with respect to an analogous electrolyte without the polymer. The performances of the fabricated DSCs have been investigated in detail by photovoltaic, transient electron measurements, EIS, Raman and UV-vis spectroscopy. This approach offers an effective way to make high-performance and long-lasting DSCs.
  •  
2.
  • Tian, Haining, et al. (författare)
  • Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells
  • 2012
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 5:12, s. 9752-9755
  • Tidskriftsartikel (refereegranskat)abstract
    • A water-soluble organic redox couple (TT-/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm.
  •  
3.
  • Aitola, Kerttu, et al. (författare)
  • Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor
  • 2015
  • Ingår i: Journal of Solid State Electrochemistry. - : Springer Science and Business Media LLC. - 1432-8488 .- 1433-0768. ; 19:10, s. 3139-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • A semitransparent, flexible single-walled carbon nanotube (SWCNT) film was efficiently used in place of evaporated silver as the counter electrode of a poly(3,4-ethylenedioxythiophene) polymer-based solid-state dye solar cell (SSDSC): the solar-to-electrical energy conversion efficiency of the SWCNT-SSDSC was 4.8 % when it was 5.2 % for the Ag-SSDSC. The efficiency difference stemmed from a 0.1-V difference in the open-circuit voltage, whose reason was speculated to be related to the different recombination processes in the two types of SSDSCs.
  •  
4.
  • Bagheri, Narjes, et al. (författare)
  • Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell
  • 2014
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 143, s. 390-397
  • Tidskriftsartikel (refereegranskat)abstract
    • A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm(-2) level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm(-2) which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g(-1) and energy density of 2.3 Wh kg(-1). The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively.
  •  
5.
  • Bagheri, Narjes, et al. (författare)
  • Physicochemical identity and charge storage properties of battery-type nickel oxide material and its composites with activated carbon
  • 2016
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 194, s. 480-488
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural properties of annealed nickel oxide and its composites with activated carbon (synthesized via simple precipitation methods) have been addressed using X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption method and scanning electron microscopy. The charge storage properties of materials have also been investigated in three-and two-electrode configurations by means of cyclic voltammetry and galvanostatic charging/discharging in alkaline media. The results are consistent with the view that, depending on a method of preparation, the resulting nickel oxide films may exhibit redox characteristics different from that typically observed for nickel oxide-based materials. It is demonstrated that faradaic-type (redox) reactions, that are typical for battery-like materials, contribute predominantly to the high electrode capacity of 257C g(-1) (at 0.1 A g(-1)). By combining nickel oxide with a capacitive material such as activated carbon within the two-electrode symmetric cell, systems with increased charge-storage capabilities have been obtained. The fact, that the voltage window of nickel oxide-based cell has been broadened positively from 0.6 V to 1 V upon introduction of activated carbon, has also resulted in the increase of the cell's energy and power densities as well. 
  •  
6.
  • Delices, Annette, et al. (författare)
  • Experimental and theoretical study of organic sensitizers for solid-state dye-sensitized solar cells (s-DSSCs)
  • 2022
  • Ingår i: Journal of Photochemistry and Photobiology A. - : Elsevier. - 1010-6030 .- 1873-2666. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a series of triarylamine based D-pi-A organic dyes, namely RK1, BA504, BA741 and the simple L1 reference dye on solid-state dye sensitized solar cells (s-DSSCs) performances was studied. The solid hole transporting material (HTM) was obtained by in-situ photoelectrochemical polymerization (in-situ PEP) process applied in two different media (water and acetonitrile) to produce the poly-3,4 ethylenedioxythiophene (PEDOT) conducting polymer (CP). A joint experimental and theoretical (density functional theory and time-dependent density functional theory) study is conducted to correlate the dye molecular structure containing different donor, pi-bridge or acceptor with several physicochemical characteristics such as optical (absorption and emission), electronic and redox properties of dyes in organic and aqueous medium; in-situ PEP process and charge transfer kinetics at the DSSC interfaces (Dye/TiO2 and Dye/HTM) through the alignment of the different energy levels of the dyes and electrodes. These properties are considered since they govern the performance of s-DSSCs denoted by the short-circuit current (J(sc)), open circuit cell potential (V-oc) and fill factor (FF). Among the four studied dyes, the s-DSSCs based on RK1, shows the best power conversion efficiency of 1.75% resulting from highest FF (0.57), V-oc (550 mV) and J(sc) (5.6 mA/cm(2)). The large differences in experimental photovoltaic performances of the obtained s-DSSCs have been well outlined and provide the guidelines for future development of more efficient solar-cell sensitizers.
  •  
7.
  • Delices, Annette, et al. (författare)
  • New covalently bonded dye/hole transporting material for better charge transfer in solid-state dye-sensitized solar cells
  • 2018
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 269, s. 163-171
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel metal-free organic dye based on triarylamine functionalized by a carbazole unit is synthesized and used in solid state dye sensitized solar cells (sDSC). The carbazole is co-polymerized with bis-EDOT by in-situ photo-electrochemical polymerization leading to a hole transporting polymer material covalently bonded to the light active centre. These first photovoltaic performances results are promising in sDSCs applications.
  •  
8.
  • Ellis, Hanna, et al. (författare)
  • PEDOT counter electrodes for dye-sensitized solar cells prepared by aqueous micellar electrodeposition
  • 2013
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 107, s. 45-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Electropolymerization of 3,4-ethylenedioxythiophene (EDOT) was performed in an aqueous micellar solution onto conducting glass and conducting flexible plastic substrates using a simple, scalable process. The background electrolyte in the process consisted merely of a micellar aqueous sodium dodecyl sulfate (SDS) solution. Electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) was conducted at constant current, resulting in homogeneous films, even on large sized conducting glass and plastic substrates (9 cm x 9 cm). The use of water as electrolyte, application on large substrates and applicability on flexible plastic substrates demonstrates the feasibility of this method for upscaling and use in industrial fabrication of DSCs. DSCs were assembled using three different PEDOT thicknesses on conducting glass as counter electrodes and a comparison was made with thermally platinized conducting glass counter electrodes. In cobalt tris(bipyridine)-based electrolyte, the catalytic performance of the PEDOT counter electrodes was significantly higher than that of platinized counter electrodes. DSCs with PEDOT counter electrodes gave higher efficiencies due to higher fill factors and a lower charge transfer resistance. The low charge transfer resistance and good catalytic performance of the PEDOT counter electrodes can be related to its mesoporous morphology resembling crumpled sheets of paper. 
  •  
9.
  • Liu, Peng, et al. (författare)
  • The combination of a new organic D-pi-A dye with different organic hole-transport materials for efficient solid-state dye-sensitized solar cells
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : RSC Publishing. - 2050-7488 .- 2050-7496. ; 3:8, s. 4420-4427
  • Tidskriftsartikel (refereegranskat)abstract
    • A new organic donor-pi-acceptor sensitizer MKA253 has been applied for highly efficient solid-state dye-sensitized solar cells (ssDSSCs). Using 2,2',7,7'-tetrakis(N,N-di-pi-methoxyphenyl-amine) 9,9'-spirobifluorene (Spiro-OMeTAD) as the hole transport material (HTM), an excellent power conversion efficiency of 6.1% was recorded together with a high short-circuit current of 12.4 mA cm(-2) under standard AM 1.5G illumination (100 mW cm(-2)). Different combinations of dyes and HTMs have also been investigated in the ssDSSC device. The results showed that small molecule HTM based devices suffer from comparably high electron recombination losses, thus causing low open-circuit voltage. In addition, photo-induced absorption (PIA) spectroscopy showed that the small-molecule HTMs lead to more efficient dye regeneration in comparison with Spiro-OMeTAD, despite a lower thermodynamic driving force. The results of this study also show that optimized energy levels for the dye-HTMs could be a vital factor for highly efficient ssDSSCs.
  •  
10.
  • Morgante, Michele, et al. (författare)
  • Microbial bioelectrochemical cells for hydrogen generation based on irradiated semiconductor photoelectrodes
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, one of the most important challenges of the 21st century is to satisfy the ever-increasing world's energy demand. Many efforts are being undertaken to find alternative renewable energy sources, which ideally should outcompete fossil fuel use in all its aspects. In this respect, photo-assisted microbial bioelectrochemical cells (MBECs) in which the reduction of water to hydrogen takes place have been of considerable interest in recent years. Two categories of such systems have been investigated: MBECs with a semiconductor photocathode or photoanode, and hybrid systems, in which an MBEC cell with dark electrodes is coupled to an electrochemical photovoltaic cell. A common denominator of all these systems is the need of microorganisms at the anode, the action of which results in the generation of an electron flow by organic matter oxidation. The aim of this review is to describe the general working principles, with respect to both biochemical and electrochemical aspects, and the performance of various categories of hydrogen-generating photo-assisted MBECs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy