SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vocat Anthony) "

Sökning: WFRF:(Vocat Anthony)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lu, Lu, 1984-, et al. (författare)
  • Synthesis and in vitro biological evaluation of quinolinyl pyrimidines targeting type II NADH-dehydrogenase (NDH-2)
  • 2022
  • Ingår i: ACS - Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 8:3, s. 482-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Type II NADH dehydrogenase (NDH-2) is an essential component of electron transfer in many microbial pathogens but has remained largely unexplored as a potential drug target. Previously, quinolinyl pyrimidines were shown to inhibit Mycobacterium tuberculosis NDH-2, as well as the growth of the bacteria [Shirude, P. S.; ACS Med. Chem. Lett. 2012, 3, 736−740]. Here, we synthesized a number of novel quinolinyl pyrimidines and investigated their properties. In terms of inhibition of the NDH-2 enzymes from M. tuberculosis and Mycobacterium smegmatis, the best compounds were of similar potency to previously reported inhibitors of the same class (half-maximal inhibitory concentration (IC50) values in the low-μM range). However, a number of the compounds had much better activity against Gram-negative pathogens, with minimum inhibitory concentrations (MICs) as low as 2 μg/mL. Multivariate analyses (partial least-squares (PLS) and principle component analysis (PCA)) showed that overall ligand charge was one of the most important factors in determining antibacterial activity, with patterns that varied depending on the particular bacterial species. In some cases (e.g., mycobacteria), there was a clear correlation between the IC50 values and the observed MICs, while in other instances, no such correlation was evident. When tested against a panel of protozoan parasites, the compounds failed to show activity that was not linked to cytotoxicity. Further, a strong correlation between hydrophobicity (estimated as clog P) and cytotoxicity was revealed; more hydrophobic analogues were more cytotoxic. By contrast, antibacterial MIC values and cytotoxicity were not well correlated, suggesting that the quinolinyl pyrimidines can be optimized further as antimicrobial agents.
  •  
2.
  • Singh, Vinayak, et al. (författare)
  • Identification of aminopyrimidine-sulfonamides as potent modulators of Wag31-mediated cell elongation in mycobacteria.
  • 2017
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 103:1, s. 13-25
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy