SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Voitsenya V. S.) "

Sökning: WFRF:(Voitsenya V. S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Moiseenko, V. E., et al. (författare)
  • Research on stellarator-mirror fission-fusion hybrid
  • 2014
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 56:9, s. 094008-
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
  •  
2.
  • Litnovsky, A., et al. (författare)
  • Diagnostic mirrors for ITER : A material choice and the impact of erosion and deposition on their performance
  • 2007
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 363, s. 1395-1402
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal mirrors will be implemented in about half of the ITER diagnostics. Mirrors in ITER will have to withstand radiation loads, erosion by charge-exchange neutrals, deposition of impurities, particle implantation and neutron irradiation. It is believed that the optical properties of diagnostic mirrors will be primarily influenced by erosion and deposition. A solution is needed for optimal performance of mirrors in ITER throughout the entire lifetime of the machine. A multi-machine research on diagnostic mirrors is currently underway in fusion facilities at several institutions and laboratories worldwide. Among others, dedicated investigations of ITER-candidate mirror materials are ongoing in Tore-Supra, TEXTOR, DIII-D, TCV, T-10 and JET. Laboratory studies are underway at IPP Kharkov (Ukraine), Kurchatov Institute (Russia) and the University of Basel (Switzerland). An overview of current research on diagnostic mirrors along with an outlook on future investigations is the subject of this paper.
  •  
3.
  • Litnovsky, A., et al. (författare)
  • Diagnostic mirrors for ITER : research in the frame of International Tokamak Physics Activity
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirrors will be used as first plasma-viewing elements in optical and laser-based diagnostics in ITER. Deterioration of the mirror performance due to e.g. sputtering of the mirror surface by plasma particles or deposition of impurities will hamper the entire performance of the affected diagnostic and thus affect ITER operation. The Specialists Working Group on First Mirrors (FM SWG) in the Topical Group on Diagnostics of the International Tokamak Physics Activity (ITPA) plays an important role in finding solutions for diagnostic first mirrors. Sound progress in research and development of diagnostic mirrors in ITER was achieved since the last overview in 2009. Single crystal (SC) rhodium (Rh) mirrors became available. SC rhodium and molybdenum (Mo) mirrors survived in conditions corresponding to similar to 200 cleaning cycles with a negligible degradation of reflectivity. These results are important for a mirror cleaning system which is presently under development. The cleaning system is based on sputtering of contaminants by plasma. Repetitive cleaning was tested on several mirror materials. Experiments comprised contamination/cleaning cycles. The reflectivity SC Mo and Rh mirrors has changed insignificantly after 80 cycles. First in situ cleaning using radiofrequency (RF) plasma was conducted in EAST tokamak with a mock-up plate of ITER edge Thomson Scattering (ETS) with five inserted mirrors. Contaminants from the mirrors were removed. Physics of cleaning discharge was studied both experimentally and by modeling. Mirror contamination can also be mitigated by protecting diagnostic ducts. A deposition mitigation (DeMi) duct system was exposed in KSTAR. The real-time measurement of deposition in the diagnostic duct was pioneered during this experiment. Results evidenced the dominating effect of the wall conditioning and baking on contamination inside the duct. A baffled cassette with mirrors was exposed at the main wall of JET for 23,6 plasma hours. No significant degradation of reflectivity was measured on mirrors located in the ducts. Predictive modeling was further advanced. A model for the particle transport, deposition and erosion at the port-plug was used in selecting an optical layout of several ITER diagnostics. These achievements contributed to the focusing of the first mirror research thus accelerating the diagnostic development. Modeling requires more efforts. Remaining crucial issues will be in a focus of the future work of the FM SWG.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy