SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vollset Knut Wiik) "

Sökning: WFRF:(Vollset Knut Wiik)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lennox, Robert J., et al. (författare)
  • Electronic tagging and tracking aquatic animals to understand a world increasingly shaped by a changing climate and extreme weather events
  • 2024
  • Ingår i: Canadian Journal of Fisheries and Aquatic Sciences. - 0706-652X .- 1205-7533. ; 81:3, s. 326-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite great promise for understanding the impacts and extent of climate change and extreme weather events on aquatic animals, their species, and ecological communities, it is surprising that electronic tagging and tracking tools, like biotelemetry and biologging, have not been extensively used to understand climate change or develop and evaluate potential interventions that may help adapt to its impacts. In this review, we provide an overview of methodologies and study designs that leverage available electronic tracking tools to investigate aspects of climate change and extreme weather events in aquatic ecosystems. Key interventions to protect aquatic life from the impacts of climate change, including habitat restoration, protected areas, conservation translocations, mitigations against interactive effects of climate change, and simulation of future scenarios, can all be greatly facilitated by using electronic tagging and tracking. We anticipate that adopting animal tracking to identify phenotypes, species, or ecosystems that are vulnerable or resilient to climate change will help in applying management interventions such as fisheries management, habitat restoration, invasive species control, or enhancement measures that prevent extinction and strengthen the resilience of communities against the most damaging effects of climate change. Given the scalability and increasing accessibility of animal tracking tools for researchers, tracking individual organisms will hopefully also facilitate research into effective solutions and interventions against the most extreme and acute impacts on species, populations, and ecosystems.
  •  
2.
  • Lennox, Robert J., et al. (författare)
  • Positioning aquatic animals with acoustic transmitters
  • 2023
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 14:10, s. 2514-2530
  • Forskningsöversikt (refereegranskat)abstract
    • Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations.This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival.We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the ‘black-box’ methods provided by some manufacturers for calculating positions.This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy