SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vrillon Agathe) "

Sökning: WFRF:(Vrillon Agathe)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boza-serrano, Antonio, et al. (författare)
  • Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer’s disease
  • 2022
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322.
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system(CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer’s disease(AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aβ plaques in both humanand mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance ofGal-3-associated infammation in AD, we aimed to investigate the Gal-3 infammatory response in the AD continuum. First,we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadiccases. We found that Gal-3 levels were signifcantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+microglial cells were associated with amyloid plaques of a larger size and more irregularshape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fuid (CSF) fromAD patients (n=119) compared to control individuals (n=36). CSF Gal-3 levels were elevated in AD patients comparedto controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin)than with amyloid-β. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered andassociated with other CSF neuroinfammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinfammatory component was more highly expressed in the CSF from amyloid-β positive (A+), CSF p-Tau181 positive (T+), andbiomarker neurodegeneration positive/negative (N+/−) (A+T+N+/−) groups compared to the A+T−N− group. Overall,Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential targetfor disease-modifying therapies involving the neuroinfammatory response.
  •  
2.
  • Götze, Karl, et al. (författare)
  • Plasma neurofilament light chain in memory clinic practice: Evidence from a real-life study.
  • 2023
  • Ingår i: Neurobiology of disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • To explore the accuracy of plasma neurofilament light chain (NfL) as a biomarker for diagnosis and staging of cognitive impairment, in a large cohort with of previously diagnosed patients in clinical practice.Retrospective, cross-sectional, monocentric study, from a tertiary memory clinic. Patients underwent cerebrospinal fluid core Alzheimer's disease (AD) biomarker evaluation using ELISA or Elecsys methods, and plasma NfL analysis using the single molecule array technology. The patients' biomarker data were examined for associations with: i/cognitive status ii/presence of neurodegenerative disease and iii/diagnostic groups. Associations between core CSF biomarkers and plasma NfL were determined.Participants (N=558, mean age=69.2±8.8, 56.5% women) were diagnosed with AD (n=274, considering dementia and MCI stages), frontotemporal dementia (FTD, n=55), Lewy body disease (LBD, n=40, considering MCI and dementia stages), other neurodegenerative diseases, n=57 (e.g Supranuclear Palsy, Corticobasal syndrome), non-neurodegenerative cognitive impairment (NND, n=79, e.g. vascular lesions, epilepsy or psychiatric disorders) or subjective cognitive impairment (SCI, n=53). Mean plasma NfL (log, pg/mL) levels were higher in neurodegenerative than non-neurodegenerative disorders (1.35±0.2 vs 1.16±0.23, p<0.001), higher in all diagnostic groups than in SCI (1.06±0.23) p<0.001), and associated with the stage of cognitive impairment (p<0.001). The addition of plasma NfL to a clinical model (age, MMSE and APOE ε4 carriership) marginally improved the discrimination of degenerative from non-degenerative disorders in ROC analysis (AUC clinical model: 0.81, 95% CI=[0.77;0.85] AUC clinical model + plasma NfL: AUC=0.83 95% CI=[0.78;0.87], delta Akaike information criterion=-11.7).Plasma NfL could help discrimination between degenerative and non-degenerative cognitive disorders, albeit not better than comprehensive clinical evaluation.
  •  
3.
  • Karikari, Thomas, et al. (författare)
  • Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer's disease diagnosis.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 755-767
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) is an established Alzheimer's disease (AD) biomarker. Novel immunoassays targeting N-terminal and mid-region p-tau181 and p-tau217 fragments are available, but head-to-head comparison in clinical settings is lacking.N-terminal-directed p-tau217 (N-p-tau217), N-terminal-directed p-tau181 (N-p-tau181), and standard mid-region p-tau181 (Mid-p-tau181) biomarkers in CSF were evaluated in three cohorts (n=503) to assess diagnostic performance, concordance, and associations with amyloid beta (Aβ).CSF N-p-tau217 and N-p-tau181 had better concordance (88.2%) than either with Mid-p-tau181 (79.7%-82.7%). N-p-tau217 and N-p-tau181 were significantly increased in early mild cognitive impairment (MCI)-AD (A+T-N-) without changes in Mid-p-tau181 until AD-dementia. N-p-tau217 and N-p-tau181 identified Aβ pathophysiology (area under the curve [AUC]=94.8%-97.1%) and distinguished MCI-AD from non-AD MCI (AUC=82.6%-90.5%) signficantly better than Mid-p-tau181 (AUC=91.2% and 70.6%, respectively). P-tau biomarkers equally differentiated AD from non-AD dementia (AUC=99.1%-99.8%).N-p-tau217 and N-p-tau181 could improve diagnostic accuracy in prodromal-AD and clinical trial recruitment as both identify Aβ pathophysiology and differentiate early MCI-AD better than Mid-p-tau181.
  •  
4.
  • Lantero Rodriguez, Juan, et al. (författare)
  • CSF p-tau205: a biomarker of tau pathology in Alzheimer's disease.
  • 2024
  • Ingår i: Acta neuropathologica. - 1432-0533. ; 147:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n=47), an unselected clinical cohort (n=212) and a research cohort well-characterized by fluid and imaging biomarkers (n=262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid(Aβ) and tau pathology positive (A+T+) cases (P<0.01). In A+cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205=0.67, rSp202=0.45) than Aβ-PET (rSp205=0.40, rSp202=0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P<0.01), whereas p-tau202 only increased in Braak V-VI (P<0.0001). Both showed stronger regional associations with tau-PET than with Aβ-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aβ and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2=69.7%; CSF p-tau202: R2=85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205=-0.36, rSp202=-0.33) and regionally, and correlated with cognition (rSp205=-0.38/-0.40, rSp202=-0.20/-0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.
  •  
5.
  • Lantero Rodriguez, Juan, et al. (författare)
  • P-tau235: a novel biomarker for staging preclinical Alzheimer's disease.
  • 2021
  • Ingår i: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
  •  
6.
  • Snellman, Anniina, et al. (författare)
  • N-terminal and mid-region tau fragments as fluid biomarkers in neurological diseases.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:8, s. 2834-2848
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain-derived tau secreted into CSF and blood consists of different N-terminal and mid-domain fragments, which may have a differential temporal course and thus, biomarker potential across the Alzheimer's disease continuum or in other neurological diseases. While current clinically validated total-tau (t-tau) assays target mid-domain epitopes, comparison of these assays with new biomarkers targeting N-terminal epitopes using the same analytical platform may be important to increase the understanding of tau pathophysiology. We developed three t-tau immunoassays targeting specific N-terminal (NTA and NTB t-tau) or mid-region (MR t-tau) epitopes, using single molecule array technology. After analytical validation, the diagnostic performance of these biomarkers was evaluated in CSF and compared with the Innotest t-tau (and as proof of concept, with N-p-tau181 and N-p-tau217) in three clinical cohorts (n = 342 total). The cohorts included participants across the Alzheimer's disease continuum (n = 276), other dementia (n = 22), Creutzfeldt-Jakob disease (n = 24), acute neurological disorders (n = 18) and progressive supranuclear palsy (n = 22). Furthermore, we evaluated all three new t-tau biomarkers in plasma (n = 44) and replicated promising findings with NTA t-tau in another clinical cohort (n = 50). In CSF, all t-tau biomarkers were increased in Alzheimer's disease compared with controls (P < 0.0001) and correlated with each other (rs = 0.53-0.95). NTA and NTB t-tau, but not other t-tau assays, distinguished amyloid-positive and amyloid-negative mild cognitive impairment with high accuracies (AUCs 84% and 82%, P < 0.001) matching N-p-tau217 (AUC 83%; DeLong test P = 0.93 and 0.88). All t-tau assays were excellent in differentiating Alzheimer's disease from other dementias (P < 0.001, AUCs 89-100%). In Creutzfeldt-Jakob disease and acute neurological disorders, N-terminal t-tau biomarkers had significantly higher fold changes versus controls in CSF (45-133-fold increase) than Innotest or MR t-tau (11-42-fold increase, P < 0.0001 for all). In progressive supranuclear palsy, CSF concentrations of all t-tau biomarkers were similar to those in controls. Plasma NTA t-tau concentrations were increased in Alzheimer's disease compared with controls in two independent cohorts (P = 0.0056 and 0.0033) while Quanterix t-tau performed poorly (P = 0.55 and 0.44). Taken together, N-terminal-directed CSF t-tau biomarkers increase ahead of standard t-tau alternatives in the Alzheimer's disease continuum, increase to higher degrees in Creutzfeldt-Jakob disease and acute neurological diseases and show better potential than Quanterix t-tau as Alzheimer's disease blood biomarkers. For progressive supranuclear palsy, other tau biomarkers should still be investigated.
  •  
7.
  • Vrillon, Agathe, et al. (författare)
  • Comparison of CSF and plasma NfL and pNfH for Alzheimer’s disease diagnosis: a memory clinic study
  • 2023
  • Ingår i: Journal of Neurology. - 0340-5354 .- 1432-1459.
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma neurofilament light chain (NfL) is a promising biomarker of axonal damage for the diagnosis of neurodegenerative diseases. Phosphorylated neurofilament heavy chain (pNfH) has demonstrated its value in motor neuron diseases diagnosis, but has less been explored for dementia diagnosis. In a cross-sectional study, we compared cerebrospinal fluid (CSF) and plasma NfL and pNfH levels in n = 188 patients from Lariboisière Hospital, Paris, France, including AD patients at mild cognitive impairment stage (AD-MCI, n = 36) and dementia stage (n = 64), non-AD MCI (n = 38), non-AD dementia (n = 28) patients and control subjects (n = 22). Plasma NfL, plasma and CSF pNfH levels were measured using Simoa and CSF NfL using ELISA. The correlation between CSF and plasma levels was stronger for NfL than pNfH (rho = 0.77 and rho = 0.52, respectively). All neurofilament markers were increased in AD-MCI, AD dementia and non-AD dementia groups compared with controls. CSF NfL, CSF pNfH and plasma NfL showed high performance to discriminate AD at both MCI and dementia stages from control subjects [AUC (area under the curve) = 0.82–0.91]. Plasma pNfH displayed overall lower AUCs for discrimination between groups compared with CSF pNfH. Neurofilament markers showed similar moderate association with cognition. NfL levels displayed significant association with mediotemporal lobe atrophy and white matter lesions in the AD group. Our results suggest that CSF NfL and pNfH as well as plasma NfL levels display equivalent performance in both positive and differential AD diagnosis in memory clinic settings. In contrast to motoneuron disorders, plasma pNfH did not demonstrate added value as compared with plasma NfL.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy