SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vučković Jelena) "

Sökning: WFRF:(Vučković Jelena)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lagoudakis, Konstantinos G., et al. (författare)
  • Initialization of a spin qubit in a site-controlled nanowire quantum dot
  • 2016
  • Ingår i: New Journal of Physics. - : Institute of Physics (IOP). - 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • A fault-tolerant quantum repeater or quantum computer using solid-state spin-based quantum bits will likely require a physical implementation with many spins arranged in a grid. Self-assembled quantum dots (QDs) have been established as attractive candidates for building spin-based quantum information processing devices, but such QDs are randomly positioned, which makes them unsuitable for constructing large-scale processors. Recent efforts have shown that QDs embedded in nanowires can be deterministically positioned in regular arrays, can store single charges, and have excellent optical properties, but so far there have been no demonstrations of spin qubit operations using nanowire QDs. Here we demonstrate optical pumping of individual spins trapped in site-controlled nanowire QDs, resulting in high-fidelity spin-qubit initialization. This represents the next step towards establishing spins in nanowire QDs as quantum memories suitable for use in a large-scale, fault-tolerant quantum computer or repeater based on all-optical control of the spin qubits.
  •  
2.
  • Lukin, Daniil M., et al. (författare)
  • Spectrally reconfigurable quantum emitters enabled by optimized fast modulation
  • 2020
  • Ingår i: NPJ QUANTUM INFORMATION. - : NATURE PUBLISHING GROUP. - 2056-6387. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
  •  
3.
  • Lukin, Daniil M., et al. (författare)
  • Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics
  • 2023
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Color centers are point defects in crystals that can provide an optical interface to a long-lived spin state for distributed quantum information processing applications. An outstanding challenge for color center quantum technologies is the integration of optically coherent emitters into scalable thin-film photonics, a prerequisite for large-scale photonics integration of color centers within a commercial foundry process. Here, we report on the integration of near-transform-limited silicon vacancy (VSi) defects into microdisk resonators fabricated in a CMOS-compatible 4H-silicon carbide-on-insulator platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode. We investigate the effect of multimode interference on the photon scattering dynamics from this multiemitter cavity quantum electrodynamics system. These results are crucial for the development of quantum networks in silicon carbide and bridge the classical-quantum photonics gap by uniting optically coherent spin defects with wafer-scalable, state-of-the-art photonics.
  •  
4.
  • Nagy, Roland, et al. (författare)
  • Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
  • 2018
  • Ingår i: Physical Review Applied. - 2331-7019. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3/2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.
  •  
5.
  • Radulaski, Marina, et al. (författare)
  • Scalable Quantum Photonics with Single Color Centers in Silicon Carbide
  • 2017
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 17:3, s. 1782-1786
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum phtonics architecture relying on single photon sources and qubits.
  •  
6.
  • Radulaski, Marina, et al. (författare)
  • Scalable Quantum Photonics with Single Color Centers in Silicon Carbide
  • 2017
  • Ingår i: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO). - : IEEE. - 9781943580279
  • Konferensbidrag (refereegranskat)abstract
    • We develop a scalable array of 4H-SiC nanopillars incorporating single silicon vacancy centers, readily available to serve as efficient single photon sources or quantum bits interfaced with free-space or lensed-fiber optics.
  •  
7.
  • Schöll, Eva, et al. (författare)
  • Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the degree of indistinguishability of cascaded photons emitted from a three-level quantum ladder system; in our case the biexciton-exciton cascade of semiconductor quantum dots. For the three-level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of noncascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow us to explore a large parameter space. Based on our model, we propose photonic structures to optimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a three-level quantum ladder system.
  •  
8.
  • Schöll, Eva, et al. (författare)
  • The crux of using the cascaded emission of a 3-level quantum ladder system to generate indistinguishable photons
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We investigate the degree of indistinguishability of cascaded photons emitted from a 3–level quantum ladder system; in our case the biexciton–exciton cascade of semiconductor quantum dots. For the 3–level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of non–cascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow to explore a large parameter space. Based on our model, we propose photonic structures too ptimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a 3–level quantum ladder system.
  •  
9.
  • Udvarhelyi, Peter, et al. (författare)
  • Vibronic States and Their Effect on the Temperature and Strain Dependence of Silicon-Vacancy Qubits in 4H-SiC
  • 2020
  • Ingår i: Physical Review Applied. - : AMER PHYSICAL SOC. - 2331-7019. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon-vacancy qubits in silicon carbide (SiC) are emerging tools in quantum-technology applications due to their excellent optical and spin properties. In this paper, we explore the effect of temperature and strain on these properties by focusing on the two silicon-vacancy qubits, V1 and V2, in 4H-SiC. We apply density-functional theory beyond the Born-Oppenheimer approximation to describe the temperature-dependent mixing of electronic excited states assisted by phonons. We obtain a polaronic gap of around 5 and 22 meV for the V1 and V2 centers, respectively, which results in a significant difference in the temperature-dependent dephasing and zero-field splitting of the excited states, which explains recent experimental findings. We also compute how crystal deformations affect the zero-phonon line of these emitters. Our predictions are important ingredients in any quantum applications of these qubits sensitive to these effects.
  •  
10.
  • White, Alexander D., et al. (författare)
  • Static and Dynamic Stark Tuning of the Silicon Vacancy in Silicon Carbide
  • 2020
  • Ingår i: 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO). - : IEEE. - 9781943580767
  • Konferensbidrag (refereegranskat)abstract
    • We present the DC Stark tuning of single Silicon Vacancies in SiC. We demonstrate static tuning across 200 GHz, exceeding the inhomogenous broadening, and dynamic tuning on timescales shorter than the optical decay rate. (C) 2020 The Author(s)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy