SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wübbenhorst Michael) "

Sökning: WFRF:(Wübbenhorst Michael)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fitie, Carel F. C., et al. (författare)
  • Polar Switching in Trialkylbenzene-1,3,5-tricarboxamides
  • 2012
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society. - 1520-6106 .- 1520-5207. ; 116:13, s. 3928-3937
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydrogen-bonded hexagonal columnar LC (Col(hd)) phases formed by benzene-1,3,5-tricarboxamide (BTA) derivatives can be aligned uniformly by an electric field and display switching behavior with a high remnant polarization. The polar switching in three symmetrically substituted BTAs with alkyl chains varying in length between 6 and 18 carbon atoms (C6, C10, and C18) was investigated by electro-optical switching experiments, dielectric relaxation spectroscopy (DRS), and solid-state NMR The goal was to characterize ferroelectric properties of BTA-based columnar LCs, which display a macroscopic axial dipole moment due to the head-to-tail stacking of hydrogen-bonded amides. The Col(hd) phase of all three BTAs can be aligned uniformly by a dc field similar to 30 V/mu m. Moreover, C10 and C18 display extrinsic polar switching characterized by a remnant polarization and coercive field of 1-2 mu C/cm(2) and 20-30 V/mu m, respectively. In the absence of an external field, the polarization is lost in 1-1000 s, depending on device details and temperature. DRS revealed a columnar glass transition in the low-temperature region of the LC phase related to collective vibrations in the hydrogen-bonded columns that freeze out below 41-54 degrees C. At higher temperatures, a relaxation process is present originating from the collective reorientation of amide groups along the column axis (inversion of the macrodipole). Matching activation energies suggest that the molecular mechanism underlying the polar switching and the R-processes is identical. These results illustrate that LC phases based on BTAs offer the unique possibility to integrate polarization with other functionalities in a single nanostructured material.
  •  
2.
  • Gorbunov, Andrey V., et al. (författare)
  • Switchable Charge Injection Barrier in an Organic Supramolecular Semiconductor
  • 2016
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 8:24, s. 15535-15542
  • Tidskriftsartikel (refereegranskat)abstract
    • We disclose a supramolecular material that combines semiconducting and dipolar functionalities. The material consists of a discotic semiconducting carbonyl-bridged triarylamine core, which is surrounded by three dipolar amide groups. In thin films, the material self-organizes in a hexagonal columnar fashion through Jr-stacking of the molecular core and hydrogen bonding between the amide groups. Alignment by an electrical field in a simple metal/semiconductor/metal geometry induces a polar order in the interface layers near the metal contacts that can be reversibly switched, while the bulk material remains nonpolarized. On suitably chosen electrodes, the presence of an interfacial polarization field leads to a modulation of the barrier for charge injection into the semiconductor. Consequently, a reversible switching is possible between a high-resistance, injection-limited off-state and a low-resistance, space-charge-limited on-state. The resulting memory diode shows switchable rectification with on/off ratios of up to two orders of magnitude. This demonstrated multifunctionality of a single material is a promising concept toward possible application in lowcost, large-area, nonvolatile organic memories.
  •  
3.
  • Zhang, Wei, et al. (författare)
  • Balancing Adsorption, Catalysis, and Desorption in Cathode Catalyst For Li–S Batteries
  • 2023
  • Ingår i: Advanced Energy Materials. - 1614-6832 .- 1614-6840. ; 13:43
  • Tidskriftsartikel (refereegranskat)abstract
    • The complicated electrochemical catalytic conversion process of polysulfides in metal–sulfur batteries involves three steps: adsorption, catalysis, and desorption process. Even as huge efforts are made for the understanding of the separate steps (especially for the adsorption and catalysis process), research focusing on the entire process is still scarce. Herein, a series of cobalt phosphides (CoP, CoP2, and CoP3) is employed with identical hollow morphology as model electrocatalysts to investigate the significance of the desorption process and discuss the balancing among the adsorption, catalysis, and desorption of lithium polysulfides (LiPSs). The experimental data demonstrate that, compared to CoP and CoP3, CoP2 exhibits moderate adsorption of LiPSs, which enhances the reduction kinetics of S8 to Li2S and regulates the desorption of short-chain LiPSs. Theoretical calculations further confirm that CoP2 with moderate adsorption of LiPSs exhibits better redox kinetics of LiPSs compared to CoP and CoP3. Moderate adsorption enables the CoP2-based sulfur cathode to deliver excellent stability with 86% capacity retention (2.6 and 2.0 times higher than CoP and CoP3, respectively) over 1000 cycles at 1 C. All these results indicate that in the adsorption-catalysis-desorption chain for LiPSs, all steps need to be considered rather than just focusing on one step of the process. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy