SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wagenveld J.) "

Sökning: WFRF:(Wagenveld J.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deka, P. P., et al. (författare)
  • The MeerKAT Absorption Line Survey (MALS) Data Release. I. Stokes I Image Catalogs at 1-1.4 GHz
  • 2024
  • Ingår i: Astrophysical Journal, Supplement Series. - 1538-4365 .- 0067-0049. ; 270:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The MeerKAT Absorption Line Survey (MALS) has observed 391 telescope pointings at the L band (900-1670 MHz) at delta less than or similar to +20 degrees. We present radio continuum images and a catalog of 495,325 (240,321) radio sources detected at a signal-to-noise ratio (S/N) > 5 over an area of 2289 deg(2) (1132 deg(2)) at 1006 MHz (1381 MHz). Every MALS pointing contains a central bright radio source (S 1 GHz greater than or similar to 0.2 Jy). The median spatial resolution is 12 ''(8 ''). The median rms noise away from the pointing center is 25 mu Jy beam(-1) (22 mu Jy beam-1) and is within similar to 15% of the achievable theoretical sensitivity. The flux density scale ratio and astrometric accuracy deduced from multiply observed sources in MALS are <1% (8% scatter) and 1 '', respectively. Through comparisons with NVSS and FIRST at 1.4 GHz, we establish the catalog's accuracy in the flux density scale and astrometry to be better than 6% (15% scatter) and 0.'' 8, respectively. The median flux density offset is higher (9%) for an alternate beam model based on holographic measurements. The MALS radio source counts at 1.4 GHz are in agreement with literature. We estimate spectral indices (alpha) of a subset of 125,621 sources (S/N > 8), confirm the flattening of spectral indices with decreasing flux density, and identify 140 ultra-steep-spectrum (alpha < -1.3) sources as prospective high-z radio galaxies (z > 2). We have identified 1308 variable and 122 transient radio sources comprising primarily active galactic nuclei that demonstrate long-term (26 yr) variability in their observed flux densities. The MALS catalogs and images are publicly available at https://mals.iucaa.in.
  •  
2.
  • Wagenveld, Jonah D., et al. (författare)
  • The MeerKAT Absorption Line Survey: Homogeneous continuum catalogues towards a measurement of the cosmic radio dipole
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • The number counts of homogeneous samples of radio sources are a tried and true method of probing the large-scale structure of the Universe, as most radio sources outside the Galactic plane are at cosmological distances. As such, they are expected to trace the cosmic radio dipole, an anisotropy analogous to the dipole seen in the cosmic microwave background (CMB). Results have shown that although the cosmic radio dipole matches the direction of the CMB dipole, it has a significantly larger amplitude. This unexplained result challenges our assumption of the Universe being isotropic, which can have large repercussions for the current cosmological paradigm. Though significant measurements have been made, sensitivity to the radio dipole is generally hampered by systematic effects that can cause large biases in the measurement. Here we assess these systematics with data from the MeerKAT Absorption Line Survey (MALS), a blind search for absorption lines with pointings centred on bright radio sources. With the sensitivity and field of view of MeerKAT, thousands of sources are observed in each pointing, allowing for the possibility of measuring the cosmic radio dipole given enough pointings. We present the analysis of ten MALS pointings, focusing on systematic effects that could lead to an inhomogeneous catalogue. We describe the calibration and creation of full band continuum images and catalogues, producing a combined catalogue containing 16 307 sources and covering 37.5 square degrees of sky down to a sensitivity of 10 μJy beam-1. We measure the completeness, purity, and flux recovery statistics for these catalogues using simulated data. We investigate different source populations in the catalogues by looking at flux densities and spectral indices and how they might influence source counts. Using the noise characteristics of the pointings, we find global measures that can be used to correct for the incompleteness of the catalogue, producing corrected number counts down to 100-200 μJy. We show that we can homogenise the catalogues and properly account for systematic effects. We determine that we can measure the dipole to 3significance with 100 MALS pointings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy