SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Waggott Daryl) "

Sökning: WFRF:(Waggott Daryl)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fresard, Laure, et al. (författare)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • Ingår i: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Tidskriftsartikel (refereegranskat)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
2.
  • Mattsson, C. Mikael, et al. (författare)
  • Informing women’s cardiovascular health through genomic analysis of extreme endurance athletes
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • Cardiovascular health exists as a spectrum of wellness and disease states. We hypothesize that interrogating the tail ends of the distribution for individuals with extreme phenotypes, such as high VO2max in endurance athletes, will inform prevention, cause and treatment of pathogenic conditions. Mounting literature suggests that the physiological path to athletic performance is different among males and females. Traits with published sexual dichotomy include lactate threshold, efficiency, heat management, and fat metabolism. To define the genetic roots of this dichotomy, we propose to investigate sex-specific genetic determinants of VO2max among elite endurance athletes. We have recruited 36 female (VO2max>63 ml/kg; >99.99th percentile) and 129 male (>75 ml/kg) elite athletes (n=167) who have been consented and undergone enhanced whole exome sequencing. Even with differential eligibility, skewed recruitment (1:3.5) is a challenge. We will recruit a total of 100 female and 156 male elite athletes, and analyze these 256 exomes for burden of rare genetic variation that may impact sex-specific determinants of VO2max. We will combine these data with an additional 1850 samples of elite athletes to evaluate for common variants that have sex-specific effects on VO2max. Lastly, we will do a sex specific genetic cohort comparison of endurance athletes with existing collections of cardiovascular disease patients. Our preliminary results show tantalizing evidence for several highly plausible sex specific genes, including androgen receptor (AR) and FTO. The AR is the target of several known performance enhancing drugs, such as testosterone. FTO is associated with numerous aspects of body composition, energy management and even some evidence for age of menarche. While already promising, rigorous analysis, increased sample size and orthogonal replication is required as our next step.
  •  
3.
  • Mattsson, C. Mikael, et al. (författare)
  • Sports genetics moving forward - lessons learned from medical research
  • 2016
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 48:3, s. 175-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Sports genetics can take advantage of lessons learned from human disease genetics. By righting past mistakes and increasing scientific rigor, the breadth and depth of knowledge in the field can be magnified. We present an outline of challenges facing sports genetics in the light of experiences from medical research.Sports performance is complex, resulting from a combination of a wide variety of different traits and attributes.  Improving sports genetics will foremost require analyses based on detailed phenotyping. In order to find widely valid, reproducible common variants associated with athletic phenotypes, study sample sizes must be dramatically increased. One paradox is that in order to confirm relevance, replications in specific populations must be undertaken. Family studies of athletes may facilitate the discovery of rare variants with large effects on athletic phenotypes. The complexity of the human genome, combined with the complexity of athletic phenotypes, will require additional metadata and biological validation to identify a comprehensive set of genes involved.Analysis of personal genetic and multiomic profiles contribute to our conceptualization of precision medicine; the same will be the case in precision sports science. In the refinement of sports genetics it is essential to evaluate similarities and differences between genders and among ethnicities. Sports genetics to date have been hampered by small sample sizes and biased methodology which can lead to erroneous associations and overestimation of effect sizes. Consequently, currently available genetic tests based on these inherently limited data cannot predict athletic performance with any accuracy.
  •  
4.
  • Mattsson, C. Mikael, et al. (författare)
  • The ELITE project (Exercise at the Limit - Inherited Traits of Endurance) - the genetic profiles of the best endurance athletes in the world.
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Cardiovascular health exists as a spectrum of wellness and disease states. Moreover, a significant portion of what defines these states is due to genetics. We hypothesize that there exist genes and pathways that dually contribute to both disease and extreme health states. Interrogating the ‘adaptive’ tail of the distribution for individuals with extreme phenotypes, such as high maximum oxygen uptake (VO2max) in endurance athletes, will inform prevention, cause and treatment of pathogenic (‘maladaptive’) conditions. 1 To date, most genetic studies in the athlete population have examined a subset of genes (out of more than 21,000 in the genome), using small sample sizes and qualitative measures of performance. To the best of our knowledge, there has not been a comprehensive genetic study of endurance athletes with strict quantitative eligibility criteria.2-4The ELITE project (Exercise at the Limit – Inherited Traits of Endurance) intends to investigate the world’s best endurance athletes, i.e. individuals with extremely high VO2max. A primary goal is to determine what role genetic variation plays in athletic ability. One of the ancillary goals of the project is to understand the unique genetic differences contributing to extreme fitness in women versus men. We will sequence and analyze the genomes of elite level competitive athletes from various countries (including USA, Scandinavia, UK, Japan, and Brazil) who are highly successful in one of several endurance sports (such as running, cross country skiing, triathlon, cycling, rowing). We have recruited 750 elite athletes (142 women and 608 men) who have been consented and undergone enhanced whole exome sequencing and/or MEGA chip GWAS analysis. Inclusion criteria for the study restricts to the highest tail end (>99.98th percentile or 1/5000), i.e. VO2max >63 ml/kg for women and >75 ml/kg for men. Even with differential eligibility, skewed recruitment (1:4) is a challenge.Our preliminary results show tantalizing evidence for potentially beneficial genetic variants in several highly plausible genes. Additionally, pilot burden testing on a subset of the athletes also showed promising results. While already promising, rigorous analysis, increased sample size and orthogonal replication is required as our next step. Mattsson CM, Wheeler M, Waggott D, Caleshu C, Ashley EA. Sports genetics moving forward - lessons learned from medical research. Physiol Genomics. 2016; 48(3):175-182.Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, Rao DC, Rankinen T. Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011; 110(5):1160-70.Eynon N, Morán M, Birk R, Lucia A. The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics. 2011;43(13):789-98.Pitsiladis YP, Tanaka M, Eynon N, Bouchard C, North KN, Williams AG, Collins M, Moran CN, Britton SL, Fuku N, Ashley EA, Klissouras V, Lucia A, Ahmetov II, de Geus E, Alsayrafi M; Athlome Project Consortium. Athlome Project Consortium: a concerted effort to discover genomic and other "omic" markers of athletic performance. Physiol Genomics. 2016;48(3):183-90.
  •  
5.
  • Sandholm, Niina, et al. (författare)
  • New susceptibility loci associated with kidney disease in type 1 diabetes
  • 2012
  • Ingår i: PLOS Genetics. - San Francisco, USA : Public Library of Science, PLOS. - 1553-7390 .- 1553-7404. ; 8:9, s. e1002921-
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genomewide association studies (GWAS) of T1D DN comprising similar to 2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 x 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 x 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-beta 1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 x 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
  •  
6.
  • Shcherbina, Anna, et al. (författare)
  • Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.
  • 2017
  • Ingår i: Journal of Personalized Medicine. - : MDPI AG. - 2075-4426. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).
  •  
7.
  • Shcherbina, Anna, et al. (författare)
  • Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort
  • 2016
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: The ability to measure activity and physiology through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. Objective: To assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. Methods: We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 +/- 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Results: Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. Conclusions: Most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).
  •  
8.
  • Tikkanen, Emmi, et al. (författare)
  • Biological Insights Into Muscular Strength : Genetic Findings in the UK Biobank
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a large genome-wide association study to discover genetic variation associated with muscular strength, and to evaluate shared genetic aetiology with and causal effects of muscular strength on several health indicators. In our discovery analysis of 223,315 individuals, we identified 101 loci associated with grip strength (P <5 x 10(-8)). Of these, 64 were associated (P < 0.01 and consistent direction) also in the replication dataset (N=111,610). eQTL analyses highlighted several genes known to play a role in neuro-developmental disorders or brain function, and the results from meta-analysis showed a significant enrichment of gene expression of brain-related transcripts. Further, we observed inverse genetic correlations of grip strength with cardiometabolic traits, and positive correlation with parents' age of death and education. We also showed that grip strength had shared biological pathways with indicators of frailty, including cognitive performance scores. By use of Mendelian randomization, we provide evidence that higher grip strength is protective of both coronary heart disease (OR= 0.69, 95% CI 0.60-0.79, P < 0.0001) and atrial fibrillation (OR = 0.75, 95% CI 0.62-0.90, P = 0.003). In conclusion, our results show shared genetic aetiology between grip strength, and cardiometabolic and cognitive health; and suggest that maintaining muscular strength could prevent future cardiovascular events.
  •  
9.
  • Waggott, Daryl, et al. (författare)
  • The Genomics of Extreme Athletes. The ELITE Study (Exercise at the Limit - Inherited Traits of Endurance).
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • Health exists as a spectrum from disease to some outlier physiological optimum. To date most molecular genetic research has focused on disease states and less on extreme health populations. We hypothesize that interrogating outlier elite endurance athletes, with strict physiological eligibility criteria, will inform cardiovascular research through the identification of complementary pathways and therapeutic targets. Eligibility criteria for the ELITE study required a lifetime VO2max, which measures maximal oxygen consumption during peak aerobic exercise, at a threshold estimated to be attainable in less than 1 in 50,000 people (men  80ml/kg/min; women 65ml/kg/min). VO2max is reported to have substantial genetic influence (h2~0.5) and is correlated with endurance sport performance along with work efficiency. Several well documented cases of athletic outliers have been tied to rare genetic variants including the Finnish cross country skier Mäntyranta (EPOR) and  Priscilla Lopes-Schliep (LMNA). In the later, the same domain of the LMNA gene is related to rare forms of muscular dystrophy. Additionally, adaptive hypoxia variations have been identified in high altitude populations in Tibet (EPAS1), Andes and Ethiopia. To date we have sequenced 268 ELITE participants using clinically enhanced exomes and run 550 samples on high density multi-ethnic SNP chips. Preliminary analysis has focused on a combination of rare variant curation and common variation association. Rare variation curation included prioritization of LOF variants within candidate genes related to oxygen transport, muscle physiology and metabolism (i.e. PPARA, PPARGC1A, RYR2, ACTN3) and global gene screening using in silico weighted burden testing. Common variant association (the largest GWAS of its kind) has been used to support rare variant findings and identify non-coding and structural variant association signals. We believe that our methodology of combining rare LOF variants with common variation association in a population with extreme endurance physiology will systematically identify pleiotropic genes with both protective and pathogenic features similar to PCSK9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (5)
konferensbidrag (3)
annan publikation (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ashley, Euan A. (7)
Mattsson, C. Mikael (6)
Shcherbina, Anna (3)
Ingelsson, Erik (2)
Wheeler, Matthew T. (2)
Groop, Leif (1)
visa fler...
Ahlqvist, Emma (1)
Lind, Lars (1)
Battle, Alexis (1)
Montgomery, Stephen ... (1)
Ladenvall, Claes (1)
Sandholm, Niina (1)
Groop, Per Henrik (1)
Hadjadj, Samy (1)
Tregouet, David Alex ... (1)
Rossing, Peter (1)
Li, Xin (1)
Gu, Harvest F (1)
Tuomilehto, Jaakko (1)
Colhoun, Helen M. (1)
Brismar, Kerstin (1)
Gustafsson, Stefan (1)
Postlethwait, John H ... (1)
Zhao, Chunli (1)
Forsblom, Carol (1)
Kyle, Jennifer E. (1)
Paterson, Andrew D (1)
Guiducci, Candace (1)
Hirschhorn, Joel N. (1)
MacRae, Calum A. (1)
Muzny, Donna M (1)
Kretzler, Matthias (1)
Balliu, Brunilda (1)
Liu, Boxiang (1)
Smith, Kevin S. (1)
Taylor, Andrew (1)
Boycott, Kym M. (1)
LeBlanc, Kimberly (1)
Marre, Michel (1)
Lajer, Maria (1)
Tarnow, Lise (1)
Hanson, Robert L. (1)
Florez, Jose C. (1)
Maduro, Valerie V. (1)
Alhenc-Gelas, Franço ... (1)
Beggs, Alan H. (1)
Falhammar, Henrik (1)
Lewis, Richard A. (1)
Williams, Winfred W (1)
Holm, Ingrid A. (1)
visa färre...
Lärosäte
Gymnastik- och idrottshögskolan (6)
Karolinska Institutet (3)
Uppsala universitet (2)
Umeå universitet (1)
Lunds universitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy