SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Waldenström Anders Professor emeritus) "

Sökning: WFRF:(Waldenström Anders Professor emeritus)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gennebäck, Nina, 1982- (författare)
  • Cardiac hypertrophy : transcription patterns, hypertrophic progression and extracellular signalling
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: The aim of this thesis was to study transcription patterns and extracellular signalling of the hypertrophic heart to better understand the mechanisms initiating, controlling and maintaining cardiac hypertrophy.Cardiac hypertrophy is a risk factor for cardiovascular morbidity and mortality. Hypertrophy of the myocardium is a state, independent of underlying disease, where the myocardium strives to compensate for an increased workload. This remodelling of the heart includes physiological changes induced by a changed gene expression, alteration of the extracellular matrix and diverse cell-to-cell signalling.Shedding microvesicles and exosomes are membrane released vesicles derived from the plasma membrane, which can mediate messages between cells and induce various cell-related processes in target cells.Methods and materials: Two different microarray studies on different materials were performed. In the first study, cardiac myectomies from 8 patients with hypertrophic obstructive cardiomyopathy (HOCM) and 5 controls without cardiac disease were used. In the second study, myocardial tissue from 6 aorta ligated and 6 sham operated (controls) rats at three different time points (1, 6 and 42 days post-surgically) were analysed. To reveal differences in gene expression the materials were analyzed with Illumina whole genome microarray and multivariate data analysis (PCA and OPLS-DA).Cultured cardiomyocytes (HL-1) were incubated with and without growth factors (TGF-β2 or PDGF BB). Microvesicles and exosomes were collected and isolated after differential centrifugations and ultracentrifugations of the cell culture medium. The microvesicles and exosomes were characterized with dynamic light scattering (DLS), flow cytometry, western blot, electron microscopy and Illumina whole genome microarray.Results: The two different microarray studies revealed differentially expressed gene transcripts and groups of transcripts. When comparing HOCM patients to controls significant down-regulation of the MYH6 gene transcript and two immediate early genes (IEGs, EGR1 and FOS), as well as significant up-regulation of the ACE2, JAK2 and HDAC5 gene transcripts were found. In the rat model, 5 gene groups showed interesting clustering after multivariate data analysis (OPLS-DA) associated with the hypertrophic development: “Atherosclerosis”, “ECM and adhesion molecules”, “Fatty acid metabolism”, “Glucose metabolism” and “Mitochondria”.The shedding microvesicles were rounded vesicles, 40-300 nm in size and surrounded by a bilayered membrane. Chromosomal DNA sequences were identified in the microvesicles. The microvesicles could be taken up by fibroblasts resulting in an altered gene expression in the fibroblasts. The exosomes from cultured cardiomyocytes (incubated with TGF-β2 or PDGF BB) had an average diameter of 50-80 nm, similar to the unstimulated control exosomes. A large, for all cardiomyocyte derived exosomes, common pool of mRNA seems stable and a smaller pool varied in mRNA content according to treatment of the cardiomyocyte. Of the common mRNA about 14% were ribosomal, 14% were of unknown locus and 5% connected to the function of the mitochondria.Conclusions: The microarray studies showed that transcriptional regulation at a stable stage of the hypertrophic development is a balance of pro and anti hypertrophic mechanisms and that diverse gene groups are differently regulated at different time points in the hypertrophic progression.OPLS-DA is a very useful and powerful tool when analyzing gene expression data, especially in finding clusters of gene groups not seen with traditional statistics.The extracellular vesicle studies suggests that microvesicles and exosomes released from cardiomyocytes contain DNA and can be involved in events in target cells by facilitating an array of processes including gene expression changes. Different treatment of the cardiomyocyte influence the content of the exosome produced, indicating that the signal function of the exosome might vary according to the state of the cardiomyocyte.
  •  
2.
  • Gustafsson, Ulf, 1976- (författare)
  • Ventricular rotation and the rotation axis : a new concept in cardiac function
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: The twisting motion of the left ventricle (LV), with clockwise rotation at the base and counter clockwise rotation at the apex during systole, is a vital part of LV function. Even though LV rotation has been studied for decades, the rotation pattern has not been described in detail. By the introduction of speckle tracking echocardiography measuring rotation has become easy of access. However, the axis around which the LV rotates has never before been assessed. The aims of this thesis were to describe the rotation pattern of the LV in detail (study I), to assess RV apical rotation (study II), develop a method to assess the rotation axis (study III) and finally to study the effect of regional ischemia to the rotation pattern of the LV (study IV). Methods: Healthy humans were examined in study I-III and the final study populations were 40 (60±14 years), 14 (62±11 years) and 39 (57±16 years) subjects, respectively. In study IV six young pigs (32-40kg) were studied. Standard echocardiographic examinations were performed. In study IV the images were recorded before and 4 minutes after occlusion of left anterior descending coronary artery (LAD). Rotation was measured in short axis images by using a speckle tracking software. By development of custom software, the rotation axis of the LV was calculated at different levels in every image frame throughout the cardiac cycle. Results: Study I showed significant difference in rotation between basal and apical rotations, as well as significant differences between segments at basal and mid ventricular levels. The rotation pattern of the LV was associated with different phases of the cardiac cycle. Study II found significant difference in rotation between the LV and the RV. RV rotation was heterogeneous and bi-directional, creating a ´tightening belt action´ to reduce it circumference. Study III indicated that the new method could assess the rotation axis of the LV. The motion of the rotation axes in healthy humans displayed a physiological and consistent pattern. Study IV found a significant difference in the rotation pattern, between baseline and after LAD occlusion, by measuring the rotation axes, but not by conventional measurements of rotation. AV-plane displacement and wall motion score (WMS) were also significantly changed after inducing regional ischemia. Conclusion: There are normally large regional differences in LV rotation, which can be associated anatomy, activation pattern and cardiac phases, indicating its importance to LV function. In difference to the LV, the RV did not show any functional rotation. However, its heterogeneous circumferential motion could still be of importance to RV function and may in part be the result of ventricular interaction. The rotation axis of the LV can now be assessed by development of a new method, which gives a unique view of the rotation pattern. The quality measurements and results in healthy humans indicate that it has a potential clinical implication in identifying pathological rotation. This was supported by the experimental study showing that the rotation axis was more sensitive than traditional measurements of rotation and as sensitive as AV-plane displacement and WMS in detecting regional myocardial dysfunction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy