SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallén Mackenzie Åsa Professor) "

Sökning: WFRF:(Wallén Mackenzie Åsa Professor)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Viereckel, Thomas, 1987- (författare)
  • United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia Circuitry
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this doctoral thesis aimed at characterizing restricted subpopulations of neurons in the Basal Ganglia circuitry and their importance in the wider function of the network. To this end, we identified subpopulations of neurons in the subthalamic nucleus (STN), substantia nigra (SN) and ventral tegmental area (VTA), characterized their molecular profile and investigated their physiological role in the circuitry.Within the mouse STN, reduction of glutamatergic neurotransmission in a subpopulation expressing Paired-like homeodomain transcription factor 2 (Pitx2) led to structural alterations in the nucleus as well as biochemical alterations of the dopaminergic system in the Nucleus accumbens (NAc) and changes in reward-related behavior. In the ventral midbrain, we identified and characterized novel marker genes selective to the VTA or SN. Of these, transient receptor potential cation channel subfamily V member 1 (TrpV1) marks a population of mainly glutamatergic neurons in the VTA which project to the NAc, while gastrin releasing peptide (Grp) is expressed in a population of dopaminergic neurons neuroprotected in Parkinson's disease. Furthermore, we discovered that disruption of glutamatergic co-release of dopaminergic neurons expressing dopamine transporter (DAT), diminishes fast EPSCs and glutamate release but does not affect the acquisition of reward-related behavioral tasks. To selectively quantify glutamate release from specific subpopulations, we devised a technique combining glutamate-amperometry and optogenetics. This was used to measure glutamate released from Pitx2-expressing synaptic terminals in the Globus pallidus as well as DAT- or TrpV1-expressing terminals in the NAc.In summary, this doctoral thesis has furthered understanding of the function and importance of specific subpopulations within the Basal Ganglia circuitry and provides a novel means to investigate glutamate in the intact rodent brain within clearly defined, restricted cell populations.
  •  
2.
  • Guillaumin, Adriane (författare)
  • The subthalamic nucleus in motor and affective functions : An optogenetic in vivo-investigation
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The basal ganglia form a group of subcortical interconnected nuclei involved in motor, limbic and cognitive functions. According to the classical model of the basal ganglia, two main pathways exert opposing control over movement, one facilitating movement and the other suppressing movement. The subthalamic nucleus (STN) plays a critical role in this function, and has also been implicated in reward processing. Despite ample knowledge of the role of the STN in motor dysfunctions in relation to Parkinson’s disease, less is known about STN’s natural role in healthy subjects.The studies described in this thesis aimed to address the functional role of the STN in its natural neurocircuitry by using a transgenic mouse line which expresses Cre recombinase under the Pitx2 promoter. The Pitx2 gene is restricted to the STN and the use of Pitx2-Cre mice thereby allows selective manipulation of STN neurons by using optogenetics. By expressing Channelrhodopsin (ChR2) or Archaerhodopsin (Arch) in Pitx2-Cre neurons, we could optogenetically excite or inhibit STN Pitx2-Cre neurons and investigate the role of the STN in motor and affective functions. We showed that optogenetic inhibition and excitation of the STN induce opposite effects on motor activity. STN excitation reduced locomotion while STN inhibition enhanced locomotion, thereby providing experimental evidence to classical motor models postulating this role. We also showed that optogenetic excitation of the STN induces potent place avoidance, a behaviour relevant to aversion. Projections from the STN to the ventral pallidum (VP) exist that when excited induced the same behaviour. The VP projects to the lateral habenula (LHb), a structure known for its role in aversion. A glutamatergic multi-synaptic connection between the STN and the LHb was confirmed.Aversive behaviour is also mediated by the hypothalamic-mesencephalic area. The Trpv1 gene is expressed within the posterior hypothalamus. By applying optogenetics in a Trpv1-Cre mouse line, projection patterns to limbic brain areas were identified, and optogenetic excitation of Trpv1-Cre neurons was found to induce place avoidance.The STN and posterior hypothalamus are thereby demonstrated as new players in the aversion neurocircuitry, while the long-assumed role of the STN in motor behaviour is confirmed. To enable future analyses of how STN manipulation might rescue motor and affective deficiency relevant to human disorders, a neuronal degeneration mouse model was generated.To conclude, the results presented in this thesis contribute to enhanced neurobiological understanding of the role played by the STN in motor and affective functions.
  •  
3.
  • Schweizer, Nadine, 1985- (författare)
  • Across Borders : A Histological and Physiological Study of the Subthalamic Nucleus in Reward and Movement
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The basal ganglia are the key circuitry controlling movement and reward behavior. Both locomotion and reward-related behavior are also modified by dopaminergic input from the substantia nigra and the ventral tegmental area (VTA). If the basal ganglia are severed by lesion or in disease, such as in Parkinson’s disease, the affected individuals suffer from severe motor impairments and often of affective and reward-related symptoms. The subthalamic nucleus (STN) is a glutamatergic key area of the basal ganglia and a common target for deep brain stimulation in Parkinson’s disease to alleviate motor symptoms. The STN serves not only motoric, but also limbic and cognitive functions, which is often attributed to a tripartite anatomical subdivision. However, the functional output of both VTA and STN may rely more on intermingled subpopulations than on a strictly anatomical subdivision. In this doctoral thesis, the role of subpopulations within and associated with the basal ganglia is addressed from both a genetic and a behavioral angle. The identification of a genetically defined subpopulation within the STN, co-expressing Paired-like homeodomain transcription factor 2 (Pitx2) and Vesicular glutamate transport 2 (Vglut2), made it possible to conditionally reduce glutamatergic transmission from this subgroup of neurons and to investigate its influence on locomotion and motivational behavior, giving interesting insights into the mechanisms possibly underlying deep brain stimulation therapy and its side-effects. We address the strong influence of the Pitx2-Vglut2 subpopulation on movement, as well as the more subtle changes in reward-related behavior and the impact of the alterations on the reward-related dopaminergic circuitry. We also further elucidate the genetic composition of the STN by finding new markers for putative STN subpopulations, thereby opening up new possibilities to target those cells genetically and optogenetically. This will help in future to examine both STN development, function in the adult central nervous system and defects caused by specific deletion. Eventually identifying and characterizing subpopulations of the STN can contribute to the optimization of deep brain stimulation and help to reduce its side-effects, or even open up possibilities for genetic or optogenetic therapy approaches.
  •  
4.
  • Tsakoumis, Emmanouil, MSc, 1990- (författare)
  • The role of leptin in zebrafish (Danio rerio) : Novel insights into appetite regulation and reproduction
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The hormone leptin is a peripheral metabolic signal and an important regulator of energy balance. In mammals, leptin acts on the appetite centers in the hypothalamus, causing anorexigenic functions by inhibiting food intake. It is also considered as a link between the nutritional status and the endocrine reproductive axis. However, the actions of leptin in teleosts are not fully understood. This thesis investigated the possible role of leptin in the regulation of appetite and reproduction in teleosts, using a loss of function leptin receptor zebrafish strain (lepr sa12953).Under different feeding conditions (normal feeding, 7-day fasting, 2- and 6-hours post refeeding) the transcription of orexigenic and anorexigenic genes was influenced by leptin in the zebrafish brain. Leptin signaling inhibited the transcription of orexigenic genes, during short-term fasting and refeeding, and stimulated the transcription of anorexigenic genes under normal feeding in wild-types, indicating an anorexigenic role of leptin in appetite regulation in zebrafish. Moreover, a leptin-dependent gene regulatory network (GRN), involved in the behavioral and metabolic control of appetite was suggested in the brain, including the cart/crhb/gnrh2 genes and their respective co-expressed modules, mediated by the transcription factor sp3a.Furthermore, impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutant females, resulting in low number of ovulated eggs. Moreover, the transcripts of luteinizing hormone beta (lhb) in the pituitary were significantly lower in the mutant females. Analysis of candidate genes revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the ovaries of the lepr mutants. Transcriptomic analysis of isolated fully grown follicles linked the reproductive deficiencies to the suppression of essential metabolic pathways during oocyte maturation and ovulation in teleosts, such as estrogen regulation, ribosome biogenesis, mRNA translation and lipid metabolism.Overall, the results from the present thesis provided, for the first time in zebrafish, evidence that leptin is involved in appetite regulation, by mediating the transcription of appetite-regulating genes and a GRN in the brain, as well as that leptin consists a critical regulator of female reproduction, especially during oocyte maturation and ovulation.
  •  
5.
  • Nordenankar, Karin, 1981- (författare)
  • Functional Analysis of the Vesicular Glutamate Transporter 2 in Specific Neuronal Circuits of the Brain
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A key issue in neuroscience is to determine the connection between neuronal circuits and behaviour. In the adult brain, all neuronal circuits include a glutamatergic component. Three proteins designated Vesicular glutamate transporter 1-3 (VGLUT1-3) possess the capability of packaging glutamate into presynaptic vesicles for release of glutamate at the nerve terminal. The present study aimed at determining the role of VGLUT2 in neuronal circuits of higher brain function, emotion, and reward-pocessing. A conditional knockout (cKO) strategy was utilised, and three different mouse lines were produced to delete VGLUT2 in specific neuronal circuits in a temporally and spatially controlled manner. First, we produced a cKO mouse in which Vglut2 was deleted in specific subpopulations of the cortex, amygdala and hippocampus from preadolescence. This resulted in blunted aspects in cognitive, emotional and social behaviour in a schizophrenia-related phenotype. Furthermore, we showed a downstream effect of the targeted deletion on the dopaminergic system. In a subsequent analysis of the same cKO mice, we showed that female cKO mice were more affected their male counterparts, and we also found that female schizophrenia patients, but not male patients, had increased Vglut2 levels in the cortex.  Second, we produced and analysed cKO mice in which Vglut2 was deleted in the cortex, amygdala and hippocampus already from midgestation, and could show that this deletion affected emotional, but not cognitive, function. Third, we addressed the role of VGLUT2 in midbrain dopamine neurons by targeting Vglut2 specifically in these neurons. These cKO mice showed a blunted activational response to the psychostimulant amphetamine and increased operant self-administration of both sugar and cocaine reinforcers. Further, the cKO mice displayed strongly enhanced cocaine-seeking in response to cocaine-associated cues, a behaviour of relevance for addiction in humans. In summary, this thesis work has addressed the role of the presynaptic glutamatergic neuron in different neuronal circuits and shown that the temporal and spatial distribution of VGLUT2 is of great significance for normal brain function.
  •  
6.
  • Vrettou, Maria, 1988- (författare)
  • Early life experiences and alcohol use in youth : An emerging role of the Vesicular Glutamate Transporters
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Initiation of alcohol consumption usually takes place during adolescence, a period characterized by a plethora of physical and emotional changes. Towards early adulthood, hazardous drinking patterns can emerge and potentially lead to the development of Alcohol Use Disorder (AUD). Both positive and negative experiences during early life can shape brain development and, through interactions with the genetic make-up, can contribute to the vulnerability of an individual to develop AUD. Epigenetic mechanisms, such as DNA methylation, potentially mediate the effect of environmental influences on gene expression, thus serving as the missing link between gene, environment and phenotype. Among various neuroadaptive changes seen in AUD, those within the glutamatergic system appear particularly prominent, mainly in withdrawal and relapse states, but also in stress-related outcomes. The glutamatergic phenotype can be determined by the expression of the Vesicular Glutamate Transporters 1-3 (VGLUT1-3). To date, the relationship between early life experiences, alcohol consumption, and Vgluts/VGLUTs genes (rodents/humans) in the initial stage of alcohol consumption and during the sensitive period of late adolescence/young adulthood has not been investigated.The present thesis, based on three studies on rodents and one on humans, aimed to examine Vglut/VGLUT1-3 correlates of early life experiences and alcohol drinking during youth. The effect of co-exposure to nicotine, because of its high comorbidity with alcohol use, as well as the role of key DNA methylation-regulating genes was also investigated. The main finding showed that individuals exposed to early life stress were more sensitive to the effect of alcohol on Vglut1-3 mRNA expression and DNA methylation, as well as expression of the DNA methylation-regulating genes, in limbic and striatal brain regions, as compared with controls. In an independent sample, prolonged nicotine co-exposure with alcohol during adolescence was associated with higher Vglut2 expression in the ventral tegmental area of young adult rats. Lastly, the single nucleotide polymorphism rs2290045 in VGLUT2 was found to moderate the environmental sensitivity to alcohol-related problems in humans. Carriers of the minor allele (T) displayed differential susceptibility to the environment; increasing quality of parenting was associated with higher and lower alcohol-related problems in the absence and presence of previous maltreatment, respectively.In conclusion, the findings highlight for the first time the role of Vgluts/VGLUTs in early stress-mediated sensitivity towards alcohol consumption and alcohol-related problems during adolescence and young adulthood, and especially a potential Vglut2/VGLUT2-mediated molecular signature behind the interactive mechanisms of these two aversive environmental factors, as well as of nicotine co-exposure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy