SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walsh Aron) "

Sökning: WFRF:(Walsh Aron)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldwin, William J., et al. (författare)
  • Dynamic Local Structure in Caesium Lead Iodide: Spatial Correlation and Transient Domains
  • 2023
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are multifunctional semiconductors with tunable structures and properties. They are highly dynamic crystals with complex octahedral tilting patterns and strongly anharmonic atomic behavior. In the higher temperature, higher symmetry phases of these materials, several complex structural features are observed. The local structure can differ greatly from the average structure and there is evidence that dynamic 2D structures of correlated octahedral motion form. An understanding of the underlying complex atomistic dynamics is, however, still lacking. In this work, the local structure of the inorganic perovskite CsPbI3 is investigated using a new machine learning force field based on the atomic cluster expansion framework. Through analysis of the temporal and spatial correlation observed during large-scale simulations, it is revealed that the low frequency motion of octahedral tilts implies a double-well effective potential landscape, even well into the cubic phase. Moreover, dynamic local regions of lower symmetry are present within both higher symmetry phases. These regions are planar and the length and timescales of the motion are reported. Finally, the spatial arrangement of these features and their interactions are investigated and visualized, providing a comprehensive picture of local structure in the higher symmetry phases.
  •  
2.
  • Krenzer, Gabriel, et al. (författare)
  • Nature of the Superionic Phase Transition of Lithium Nitride from Machine Learning Force Fields
  • 2023
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 35:15, s. 6133-6140
  • Tidskriftsartikel (refereegranskat)abstract
    • Superionic conductors have great potential as solid-stateelectrolytes,but the physics of type-II superionic transitions remains elusive.In this study, we employed molecular dynamics simulations, using machinelearning force fields, to investigate the type-II superionic phasetransition in & alpha;-Li3N. We characterized Li3N above and below the superionic phase transition by calculatingthe heat capacity, Li+ ion self-diffusion coefficient,and Li defect concentrations as functions of temperature. Our findingsindicate that both the Li+ self-diffusion coefficient andLi vacancy concentration follow distinct Arrhenius relationships inthe normal and superionic regimes. The activation energies for self-diffusionand Li vacancy formation decrease by a similar proportion across thesuperionic phase transition. This result suggests that the superionictransition may be driven by a decrease in defect formation energeticsrather than changes in Li transport mechanism. This insight may haveimplications for other type-II superionic materials.
  •  
3.
  • Liang, Xia, et al. (författare)
  • Structural Dynamics Descriptors for Metal Halide Perovskites
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 127:38, s. 19141-19151
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have shown extraordinary performance in solar energy conversion technologies. They have been classified as "soft semiconductors" due to their flexible corner-sharing octahedral networks and polymorphous nature. Understanding the local and average structures continues to be challenging for both modeling and experiments. Here, we report the quantitative analysis of structural dynamics in time and space from molecular dynamics simulations of perovskite crystals. The compact descriptors provided cover a wide variety of structural properties, including octahedral tilting and distortion, local lattice parameters, molecular orientations, as well as their spatial correlation. To validate our methods, we have trained a machine learning force field (MLFF) for methylammonium lead bromide (CH3NH3PbBr3) using an on-the-fly training approach with Gaussian process regression. The known stable phases are reproduced, and we find an additional symmetry-breaking effect in the cubic and tetragonal phases close to the phase-transition temperature. To test the implementation for large trajectories, we also apply it to 69,120 atom simulations for CsPbI3 based on an MLFF developed using the atomic cluster expansion formalism. The structural dynamics descriptors and Python toolkit are general to perovskites and readily transferable to more complex compositions.
  •  
4.
  • Michaels, Hannes, et al. (författare)
  • Copper coordination polymers with selective hole conductivity
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 10:17, s. 9582-9591
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging technologies in solar energy will be critical in enabling worldwide society in overcoming the present energy challenges and reaching carbon net zero. Inefficient and unstable charge transport materials limit the current emerging energy conversion and storage technologies. Low-dimensional coordination polymers represent an alternative, unprecedented class of charge transport materials, comprised of molecular building blocks. Here, we provide a comprehensive study of mixed-valence coordination polymers from an analysis of the charge transport mechanism to their implementation as hole-conducting layers. Cu-II dithiocarbamate complexes afford morphology control of 1D polymer chains linked by (CuI2X2) copper halide rhombi. Concerted theoretical and experimental efforts identified the charge transport mechanism in the transition to band-like transport with a modeled effective hole mass of 6m(e). The iodide-bridged coordination polymer showed an excellent conductivity of 1 mS cm(-1) and a hole mobility of 5.8 10(-4) cm(2) (V s)(-1) at room temperature. Nanosecond selective hole injection into coordination polymer thin films was captured by nanosecond photoluminescence of halide perovskite films. Coordination polymers constitute a sustainable, tunable alternative to the current standard of heavily doped organic hole conductors.
  •  
5.
  •  
6.
  • Mosquera-Lois, Irea, et al. (författare)
  • Imperfections are not 0 K: free energy of point defects in crystals
  • 2023
  • Ingår i: Chemical Society Reviews. - : ROYAL SOC CHEMISTRY. - 0306-0012 .- 1460-4744. ; 52:17, s. 5812-5826
  • Forskningsöversikt (refereegranskat)abstract
    • Defects determine many important properties and applications of materials, ranging from doping in semiconductors, to conductivity in mixed ionic-electronic conductors used in batteries, to active sites in catalysts. The theoretical description of defect formation in crystals has evolved substantially over the past century. Advances in supercomputing hardware, and the integration of new computational techniques such as machine learning, provide an opportunity to model longer length and time-scales than previously possible. In this Tutorial Review, we cover the description of free energies for defect formation at finite temperatures, including configurational (structural, electronic, spin) and vibrational terms. We discuss challenges in accounting for metastable defect configurations, progress such as machine learning force fields and thermodynamic integration to directly access entropic contributions, and bottlenecks in going beyond the dilute limit of defect formation. Such developments are necessary to support a new era of accurate defect predictions in computational materials chemistry.
  •  
7.
  • Park, So Yeon, et al. (författare)
  • Sustainable lead management in halide perovskite solar cells
  • 2020
  • Ingår i: Nature Sustainability. - : NATURE RESEARCH. - 2398-9629. ; 3:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The most-efficient solar cells use Pb-based halide perovskites; however, their toxicity poses environmental and health risks. Here, the authors report an adsorbent that allows for sustainable Pb management in these devices. Despite the rapid development of perovskite solar cells (PSCs) toward commercialization, the toxic lead (Pb) ions in PSCs pose a potential threat to the environment, health and safety. Managing Pb via recycling represents a promising approach to mitigating its toxicity. However, managing Pb from commonly used organic solvents has been challenging due to the lack of suitable Pb adsorbents. Here, we report a new adsorbent for both separation and recovery of Pb from PSC pollutants. The synthesized iron-incorporated hydroxyapatite possesses a strongly negatively charged surface that improves electrostatic interaction through surface-charge delocalization, thus leading to enhanced Pb adsorption. We demonstrate the feasibility of a complete Pb management process, including the purification of Pb-containing non-aqueous solvents below 15 parts per 10(9), a level compliant with the standards of the US Environmental Protection Agency, as well as recycling of 99.97% of Pb ions by forming lead iodide.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy