SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Aoxue) "

Sökning: WFRF:(Wang Aoxue)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Xi, et al. (författare)
  • MicroRNA-132 with Therapeutic Potential in Chronic Wounds.
  • 2017
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 137:12, s. 2630-2638
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic wounds represent a major and rising health and economic burden worldwide. There is a continued search toward more effective wound therapy. We found significantly reduced microRNA-132 (miR-132) expression in human diabetic ulcers compared with normal skin wounds and also in skin wounds of leptin receptor-deficient (db/db) diabetic mice compared with wild-type mice. Local replenishment of miR-132 in the wounds of db/db mice accelerated wound closure effectively, which was accompanied by increased proliferation of wound edge keratinocytes and reduced inflammation. The pro-healing effect of miR-132 was further supported by global transcriptome analysis, which showed that several inflammation-related signaling pathways (e.g., NF-κB, NOD-like receptor, toll-like receptor, and tumor necrosis factor signaling pathways) were the top ones regulated by miR-132 in vivo. Moreover, we topically applied liposome-formulated miR-132 mimics mixed with pluronic F-127 gel on human ex vivo skin wounds, which promoted re-epithelialization. Together, our study showed the therapeutic potential of miR-132 in chronic wounds, which warrants further evaluation in controlled clinical trials.
  •  
2.
  • Herter, Eva K., et al. (författare)
  • WAKMAR2, a Long Noncoding RNA Downregulated in Human Chronic Wounds, Modulates Keratinocyte Motility and Production of Inflammatory Chemokines
  • 2019
  • Ingår i: Journal of Investigative Dermatology. - : ELSEVIER SCIENCE INC. - 0022-202X .- 1523-1747. ; 139:6, s. 1373-1384
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic wounds represent a major and growing health and economic burden worldwide. A better understanding of molecular mechanisms of normal as well as impaired wound healing is needed to develop effective treatment. Herein we studied the potential role of long noncoding RNA LOC100130476 in skin wound repair. LOC100130476 is an RNA polymerase IIeencoded polyadenylated transcript present in both cytoplasm and nucleus. We found that its expression was lower in wound-edge keratinocytes of human chronic wounds compared to normal wounds of healthy donors and intact skin. In cultured keratinocytes, LOC100130476 expression was induced by TGF-beta signaling. By reducing LOC100130476 expression with antisense oligos or activating its transcription with CRISPR/Cas9 Synergistic Activation Mediator system, we showed that LOC100130476 restricted the production of inflammatory chemokines by keratinocytes, while enhancing cell migration. In line with this, knockdown of LOC100130476 impaired re-epithelization of human ex vivo wounds. Based on these results, we named LOC100130476 wound and keratinocyte migration-associated long noncoding RNA 2 (WAKMAR2). Moreover, we identified a molecular network that may mediate the biological function of WAKMAR2 in keratinocytes using microarray. In summary, our data suggest that WAKMAR2 is an important regulator of skin wound healing and its deficiency may contribute to the pathogenesis of chronic wounds.
  •  
3.
  • Li, Dongqing, et al. (författare)
  • Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:19, s. 9443-9452
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-beta signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed "wound and keratinocyte migration-associated lncRNA 1" (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.
  •  
4.
  • Li, Dongqing, et al. (författare)
  • MicroRNA-132 enhances transition from inflammation to proliferation during wound healing.
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:8, s. 3008-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response- and cell cycle-related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase.
  •  
5.
  • Li, Dongqing, et al. (författare)
  • MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration.
  • 2015
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 135:6, s. 1676-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound healing is a basic biological process restoring the integrity of the skin. The role of microRNAs during this process remains largely unexplored. By using an in vivo human skin wound healing model, we show here that the expression of miR-31 is gradually upregulated in wound edge keratinocytes in the inflammatory (1 day after injury) through the proliferative phase (7 days after injury) in comparison with intact skin. In human primary keratinocytes, overexpression of miR-31 promoted cell proliferation and migration, whereas inhibition of miR-31 had the opposite effects. Moreover, we identified epithelial membrane protein 1 (EMP-1) as a direct target of miR-31 in keratinocytes. The expression of EMP-1 in the skin was negatively correlated with the level of miR-31 during wound healing. Silencing of EMP-1 mimicked the effects of overexpression of miR-31 on keratinocyte proliferation and migration, indicating that EMP-1 is a critical target mediating the functions of miR-31 in keratinocytes. Finally, we demonstrated that transforming growth factor-β2, which is highly expressed in skin wounds, upregulated miR-31 expression in keratinocytes. Collectively, we identify miR-31 as a key regulator for promoting keratinocyte proliferation and migration during wound healing.
  •  
6.
  • Li, Dongqing, et al. (författare)
  • miR-19a/b and miR-20a promote wound healing by regulating the inflammatory response of keratinocytes
  • 2021
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier. - 0022-202X .- 1523-1747. ; 141:3, s. 659-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Persistent and impaired inflammation impedes tissue healing and is characteristic of chronic wounds. A better understanding of the mechanisms controlling wound inflammation is needed. Here we show that in human wound-edge keratinocytes, the expression of miR-17, miR-18a, miR-19a, miR-19b, and miR-20a, which all belong to the miR-17∼92 cluster, is upregulated during wound repair. However, their levels are lower in chronic ulcers than acute wounds at the proliferative phase. Conditional knockout of miR-17∼92 in keratinocytes as well as injection of miR-19a/b and miR-20a antisense inhibitors into wound-edges enhanced inflammation and delayed wound closure in mice. In contrast, conditional overexpression of the miR-17∼92 cluster or miR-19b alone in mice keratinocytes accelerated wound closure in vivo. Mechanistically, miR-19a/b and miR-20a decreased TLR3-mediated NF-κB activation by targeting SHCBP1 and SEMA7A, respectively, reducing the production of inflammatory chemokines/cytokines by keratinocytes. Thus, as crucial regulators of wound inflammation, lack of miR-19a/b and miR-20a may contribute to sustained inflammation and impaired healing in chronic wounds. In line with this, we show that a combinatory treatment with miR-19b and miR-20a improved wound healing in a mouse model of type 2 diabetes.
  •  
7.
  • Meisgen, Florian, et al. (författare)
  • MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes.
  • 2014
  • Ingår i: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 134:7, s. 1931-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • Keratinocytes represent the first line of defense against pathogens in the skin and have important roles in initiating and regulating inflammation during infection and autoimmunity. Here we investigated the role of miR-146a in the regulation of the innate immune response of keratinocytes. Toll-like receptor 2 (TLR2) stimulation of primary human keratinocytes resulted in an NF-κB- and mitogen-activated protein kinase-dependent upregulation of miR-146a expression, which was surprisingly long lasting, contrasting with the rapid and transient induction of inflammatory mediators. Overexpression of miR-146a significantly suppressed the production of IL-8, CCL20, and tumor necrosis factor-α, which functionally suppressed the chemotactic attraction of neutrophils by keratinocytes. Inhibition of endogenous miR-146a induced the production of inflammatory mediators even in nonstimulated keratinocytes, and potentiated the effect of TLR2 stimulation. Transcriptomic profiling revealed that miR-146a suppresses the expression of a large number of immune-related genes in keratinocytes. MiR-146a downregulated interleukin-1 receptor-associated kinase 1 and TNF receptor-associated factor 6, two key adapter molecules downstream of TLR signaling, and suppressed NF-κB promoter-binding activity as shown by promoter luciferase experiments. Together, these data identify miR-146a as a regulatory element in keratinocyte innate immunity, which prevents the production of inflammatory mediators under homeostatic conditions and serves as a potent negative feedback regulator after TLR2 stimulation.
  •  
8.
  • Wang, Aoxue, et al. (författare)
  • MicroRNA-31 is overexpressed in cutaneous squamous cell carcinoma and regulates cell motility and colony formation ability of tumor cells.
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 134, s. S22-S22
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutaneous squamous cell carcinoma (cSCC) is a malignancy of epidermal keratinocytes that is responsible for approximately 20% of skin cancer-related death yearly. We have previously compared the microRNA (miRNA) expression profile of cSCC to healthy skin and found the dysregulation of miRNAs in human cSCC. In this study we show that miR-31 is overexpressed in cSCC (n = 68) compared to healthy skin (n = 34) and precancerous skin lesions (actinic keratosis, n = 12). LNA in situ hybridization revealed that miR-31 was specifically up-regulated in tumor cells. Mechanistic studies of inhibition of endogenous miR-31 in human metastatic cSCC cells revealed suppressed migration, invasion and colony forming ability, whereas overexpression of miR-31 induced these phenotypes. These results indicate that miR-31 regulates cancer-associated phenotypes of cSCC and identify miR-31 as a potential target for cSCC treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy