SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Bohan) "

Sökning: WFRF:(Wang Bohan)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tran, K. B., et al. (författare)
  • The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet. - 0140-6736. ; 400:10352, s. 563-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
2.
  • Alvarez, E. M., et al. (författare)
  • The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet Oncology. - : Elsevier BV. - 1470-2045. ; 23:1, s. 27-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
3.
  •  
4.
  • Chen, Song, et al. (författare)
  • Formation of Amorphous Iron-Calcium Phosphate with High Stability
  • 2023
  • Ingår i: Advanced Materials. - : John Wiley & Sons. - 0935-9648 .- 1521-4095. ; 35:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC) are reported. The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid, and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates show enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.
  •  
5.
  • Fu, Le, et al. (författare)
  • Far from equilibrium ultrafast high-temperature sintering of ZrO2-SiO2 nanocrystalline glass-ceramics
  • 2023
  • Ingår i: Journal of The American Ceramic Society. - : John Wiley & Sons. - 0002-7820 .- 1551-2916. ; 106:7, s. 4005-4012
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast high-temperature sintering (UHS) is a novel sintering technique with ultrashort firing cycles (e.g., a few tens of seconds). The feasibility of UHS has been validated on several ceramics and metals; however, its potential in consolidating glass-ceramics has not yet been demonstrated. In this work, an optimized carbon-free UHS was utilized to prepare ZrO2-SiO2 nanocrystalline glass-ceramics (NCGCs). The phase composition, grain size, densification behavior, and microstructures of NCGCs prepared by UHS were investigated and compared with those of samples sintered by pressureless sintering. Results showed that NCGCs with a high relative density (similar to 95%) can be obtained within similar to 50 s discharge time by UHS. The UHS processing not only hindered the formation of ZrSiO4 and cristobalite but also enhanced the stabilization of t-ZrO2. Meanwhile, owing to the ultrashort firing cycles, the UHS technology allowed the NCGCs to be consolidated in a far from equilibrium state. The NCGCs showed a microstructure of spherical monocrystalline ZrO2 nanocrystallites embedded in an amorphous SiO2 matrix.
  •  
6.
  • Fu, Le, et al. (författare)
  • Liquid-phase sintering of ZrO2-based nanocrystalline glass-ceramics achieved by multielement co-doping
  • 2023
  • Ingår i: Journal of The American Ceramic Society. - : John Wiley & Sons. - 0002-7820 .- 1551-2916. ; 106:4, s. 2702-2715
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid-phase sintering (LPS) is an effective pathway to assist the densification of ceramics. However, it has seldom been used to densify glass-ceramics. In the present study, a multielement co-doping strategy has been utilized to achieve LPS of a ZrO2-SiO2 nanocrystalline glass-ceramic. Compared with undoped samples densified by solid-state sintering, doping of equimolar Al, Y, and Ca promoted the densification of the glass-ceramic at lower temperatures with a faster densification rate. Ternary doping enhanced coarsening of ZrO2 nanocrystallites during sintering and annealing. The distribution of dopants was carefully observed with X-ray energy-dispersive spectrometry technique in scanning electron transmission microscopy mode. Results showed that the three dopants showed different distribution behaviors. After sintering, Y dopants were predominately distributed in ZrO2 nanocrystallites, whereas parts of Al and Ca dopants were distributed in ZrO2 nanocrystallites and part of them co-segregated at the ZrO2/SiO2 heterointerfaces. Meanwhile, the segregation of Ca dopant at some intergranular films among ZrO2 nanocrystallites was observed. Redistribution of dopants did not occur during annealing.
  •  
7.
  • Fu, Le, et al. (författare)
  • Microstructure of rapidly-quenched ZrO2-SiO2 glass-ceramics fabricated by container-less aerodynamic levitation technology
  • 2023
  • Ingår i: Journal of The American Ceramic Society. - : John Wiley & Sons. - 0002-7820 .- 1551-2916. ; 106:4, s. 2635-2651
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an aerodynamic levitation technology (ALT) was utilized to prepare ZrO2-SiO2 glass-ceramics with two different ZrO2 contents, that is, 35 mol% and 50 mol%. The glass-ceramics were partially melted at similar to 2000 degrees C or fully melted at similar to 3000 degrees C by ALT, followed by rapid quenching to obtain spherical glass-ceramic beads. The phase compositions and microstructures of the glass-ceramics were characterized. Crystallization of ZrO2 occurred during the solidification process and ZrO2 content, processing temperature, and the addition of yttrium (3 mol%) affected the crystalline phase of ZrO2. No ZrSiO4 or crystalline SiO2 were formed during the solidification process and the glass-ceramics were away from thermodynamic equilibrium due to rapid quenching. The glass-ceramics showed a microstructure of irregular-shaped ZrO2 micro-aggregates embedded in an amorphous SiO2 matrix, with lamellar twins and lattice defects formed within ZrO2 crystals. For samples prepared at similar to 3000 degrees C, a liquid-liquid phase separation occurred in the melt, which eventually resulted in the formation of large and irregular-shaped ZrO2 aggregates. In comparison, for samples prepared at similar to 2000 degrees C, pre-existed ZrO2 crystals formed during heating acted as nucleation sites during the cooling process, followed by grain growth to form large ZrO2 aggregates. Solidification and microstructure formation mechanisms were proposed to elucidate the solidification process during rapid cooling and the microstructure of the glass-ceramics obtained.
  •  
8.
  • Fu, Le, et al. (författare)
  • New insights into the formation mechanism of zircon in a ZrO2-SiO2 nanocrystalline glass-ceramic : A TEM study
  • 2022
  • Ingår i: Ceramics International. - : Elsevier. - 0272-8842 .- 1873-3956. ; 48:18, s. 27097-27105
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously observed that doping of Ca ions was beneficial to the formation of zircon (ZrSiO4). It is well known that synthetic ZrSiO4 is typically formed via a solid-state reaction between ZrO2 and SiO2, in which the interfaces between the reactant and resultant play an important role. However, the interfaces are lacking detailed microstructural observation. This follow-up study aims at exploring the formation mechanism of ZrSiO4 by inspecting the interfaces at the nano and atomic scales with TEM techniques. Results demonstrated that ZrSiO4 was formed in the Ca-doped sample after sintering at 1200 ?, whereas, no ZrSiO4 was formed in the undoped sample even after sintering at 1230 ?. The Ca-doped sample consisted of a continuous ZrSiO4 matrix with dispersed ZrO2 nanocrystallites. Doping of Ca ions promoted the formation of ZrSiO4 by causing lattice distortion and oxygen vacancies in ZrO2 lattices. Thin amorphous grain boundary complexions were found between ZrO2 nanocrystallites and between ZrO2 and ZrSiO4 crystallites. These amorphous complexions acted as reaction sites and an intermediate metastable state for the solid-state reaction. A detailed formation mechanism of ZrSiO4 at the nanometer scale and atomic scale has been proposed.
  •  
9.
  • Fu, Le, et al. (författare)
  • Structural integrity and damage of glass-ceramics after He ion irradiation : Insights from ZrO2-SiO2 nanocrystalline glass-ceramics
  • 2023
  • Ingår i: Journal of the European Ceramic Society. - : Elsevier. - 0955-2219 .- 1873-619X. ; 43:6, s. 2624-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing new radiation-resistant materials and understanding the structural damages caused by radiation are persistent goals of material scientists. Here, we report on the structural integrity and damage to ZrO2-SiO2 nanocrystalline glass-ceramics after radiation with 1.4 MeV He ions at three different fluences: 1.0 x 1016 ions/ cm2 (low), 5.0 x 1016 ions/cm2 (moderate), and 1.0 x 1017 ions/cm2 (high) at 500 degrees C. Grazing incident X-ray diffraction shows the tetragonal-ZrO2 to monoclinic-ZrO2 phase transformation induced by microstrain from the irradiation. The addition of yttrium indicated tetragonal-ZrO2 stabilization effect during irradiation. The irra-diated glass-ceramics show a Raman signal-enhancement effect probably related to the electronic structure changes of the amorphous SiO2 component in the glass-ceramics. The formation of microcracks and lattice de-fects within ZrO2 nanocrystallites is the main structural damage caused by irradiation. There was no observable amorphization of ZrO2 nanocrystallites due to irradiation. No obvious He bubbles were detected, either. The formation of microcracks results in a decrease of in the nanohardness of the glass-ceramics. The results provide fundamental experimental data to understand the structural integrity and damage caused by radiation, which could be useful to design radiation-resistant nanocrystalline glass-ceramics for extremely radioactive environments.
  •  
10.
  • Fu, Le, et al. (författare)
  • Understanding microstructure-mechanical properties relationship in ZrO2-SiO2 nanocrystalline glass-ceramics : The effect of ZrO2 content
  • 2022
  • Ingår i: Materials Science & Engineering. - : Elsevier. - 0921-5093 .- 1873-4936. ; 840
  • Tidskriftsartikel (refereegranskat)abstract
    • The content of crystalline phase plays a significant role in manipulating the microstructure and mechanical properties of glass-ceramics. This study aims at exploring the optimum content of crystalline phase in ZrO2-SiO2 nanocrystalline glass-ceramics (NCGCs) in terms of obtaining the highest mechanical properties. To this end, the mechanical properties of ZrO2-SiO2 NCGCs with 70 mol%, 75 mol%, 80 mol% ZrO2 were tested and compared with those of the previously prepared NCGCs with ZrO2 content ranging from 35 mol% to 65 mol%. Results showed that 65 mol% was the optimum content of ZrO2 in terms of obtaining the highest flexural strength. The flexural strength of NCGCs with ZrO2 content over 65 mol% was lower than that of the NCGCs with 65 mol% ZrO2. This was because the NCGC with 65 mol% ZrO2 had a homogenous microstructure, with ZrO2 nano crystallites homogeneously distributed in an amorphous SiO2 matrix. Whereas, when ZrO2 content was increased to 75 mol%, ZrO2 nanocrystallites were not homogeneously distributed in the SiO2 matrix anymore. The formation of SiO2 "holes/canyon " due to ZrO2 grain coalescence resulted in the decrease of flexural strength. The fracture mechanism and wear properties of the NCGCs were also investigated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy