SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Dacheng) "

Search: WFRF:(Wang Dacheng)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kristanl, Matej, et al. (author)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • In: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
2.
  • Kristan, Matej, et al. (author)
  • The Visual Object Tracking VOT2015 challenge results
  • 2015
  • In: Proceedings 2015 IEEE International Conference on Computer Vision Workshops ICCVW 2015. - : IEEE. - 9780769557205 ; , s. 564-586
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website(1).
  •  
3.
  • Wang, Yanan, et al. (author)
  • Rapid Dimming Followed by a State Transition: A Study of the Highly Variable Nuclear Transient AT 2019avd over 1000+ Days
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 962:1
  • Journal article (peer-reviewed)abstract
    • The tidal disruption of a star around a supermassive black hole (SMBH) offers a unique opportunity to study accretion onto an SMBH on a human timescale. We present results from our 1000+ days monitoring campaign of AT 2019avd, a nuclear transient with tidal-disruption-event-like properties, with NICER, Swift, and Chandra. Our primary finding is that approximately 225 days following the peak of the X-ray emission, there is a rapid drop in luminosity exceeding 2 orders of magnitude. This X-ray dropoff is accompanied by X-ray spectral hardening, followed by a plateau phase of 740 days. During this phase, the spectral index decreases from 6.2 ± 1.1 to 2.3 ± 0.4, while the disk temperature remains constant. Additionally, we detect pronounced X-ray variability, with an average fractional rms amplitude of 47%, manifesting over timescales of a few dozen minutes. We propose that this phenomenon may be attributed to intervening clumpy outflows. The overall properties of AT 2019avd suggest that the accretion disk evolves from a super-Eddington to a sub-Eddington luminosity state, possibly associated with a compact jet. This evolution follows a pattern in the hardness-intensity diagram similar to that observed in stellar-mass BHs, supporting the mass invariance of accretion-ejection processes around BHs
  •  
4.
  • Zhou, Dapeng, et al. (author)
  • Lysosomal glycosphingolipid recognition by NKT cells.
  • 2004
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 306:5702, s. 1786-9
  • Journal article (peer-reviewed)abstract
    • NKT cells represent a distinct lineage of T cells that coexpress a conserved alphabeta T cell receptor (TCR) and natural killer (NK) receptors. Although the TCR of NKT cells is characteristically autoreactive to CD1d, a lipid-presenting molecule, endogenous ligands for these cells have not been identified. We show that a lysosomal glycosphingolipid of previously unknown function, isoglobotrihexosylceramide (iGb3), is recognized both by mouse and human NKT cells. Impaired generation of lysosomal iGb3 in mice lacking beta-hexosaminidase b results in severe NKT cell deficiency, suggesting that this lipid also mediates development of NKT cells in the mouse. We suggest that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view